![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl3an3b | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
Ref | Expression |
---|---|
syl3an3b.1 | ⊢ (𝜑 ↔ 𝜃) |
syl3an3b.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl3an3b | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an3b.1 | . . 3 ⊢ (𝜑 ↔ 𝜃) | |
2 | 1 | biimpi 206 | . 2 ⊢ (𝜑 → 𝜃) |
3 | syl3an3b.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | syl3an3 1401 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1056 |
This theorem is referenced by: fresaunres1 6115 fvun2 6309 nnmsucr 7750 xrlttr 12011 iccdil 12348 icccntr 12350 absexpz 14089 posglbd 17197 f1omvdco3 17915 isdrngd 18820 unicld 20898 2ndcdisj2 21308 logrec 24546 cdj3lem3 29425 bnj563 30939 bnj1033 31163 stoweidlem14 40549 |
Copyright terms: Public domain | W3C validator |