MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl332anc Structured version   Visualization version   GIF version

Theorem syl332anc 1507
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl12anc.1 (𝜑𝜓)
syl12anc.2 (𝜑𝜒)
syl12anc.3 (𝜑𝜃)
syl22anc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl133anc.7 (𝜑𝜎)
syl233anc.8 (𝜑𝜌)
syl332anc.9 (((𝜓𝜒𝜃) ∧ (𝜏𝜂𝜁) ∧ (𝜎𝜌)) → 𝜇)
Assertion
Ref Expression
syl332anc (𝜑𝜇)

Proof of Theorem syl332anc
StepHypRef Expression
1 syl12anc.1 . 2 (𝜑𝜓)
2 syl12anc.2 . 2 (𝜑𝜒)
3 syl12anc.3 . 2 (𝜑𝜃)
4 syl22anc.4 . 2 (𝜑𝜏)
5 syl23anc.5 . 2 (𝜑𝜂)
6 syl33anc.6 . 2 (𝜑𝜁)
7 syl133anc.7 . . 3 (𝜑𝜎)
8 syl233anc.8 . . 3 (𝜑𝜌)
97, 8jca 501 . 2 (𝜑 → (𝜎𝜌))
10 syl332anc.9 . 2 (((𝜓𝜒𝜃) ∧ (𝜏𝜂𝜁) ∧ (𝜎𝜌)) → 𝜇)
111, 2, 3, 4, 5, 6, 9, 10syl331anc 1501 1 (𝜑𝜇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 383  df-3an 1073
This theorem is referenced by:  mdetunilem5  20640  mdetuni0  20645  lnjatN  35588  lncmp  35591  cdlema1N  35599  4atexlemex6  35882  cdlemd4  36010  cdleme18c  36102  cdleme18d  36104  cdleme19b  36113  cdleme21ct  36138  cdleme21d  36139  cdleme21e  36140  cdleme21k  36147  cdleme22g  36157  cdleme24  36161  cdleme27a  36176  cdleme27N  36178  cdleme28a  36179  cdleme40n  36277  cdlemg16zz  36469  cdlemg37  36498  cdlemk21-2N  36700  cdlemk20-2N  36701  cdlemk28-3  36717  cdlemk19xlem  36751
  Copyright terms: Public domain W3C validator