Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl323anc Structured version   Visualization version   GIF version

Theorem syl323anc 1507
 Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl12anc.1 (𝜑𝜓)
syl12anc.2 (𝜑𝜒)
syl12anc.3 (𝜑𝜃)
syl22anc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl133anc.7 (𝜑𝜎)
syl233anc.8 (𝜑𝜌)
syl323anc.9 (((𝜓𝜒𝜃) ∧ (𝜏𝜂) ∧ (𝜁𝜎𝜌)) → 𝜇)
Assertion
Ref Expression
syl323anc (𝜑𝜇)

Proof of Theorem syl323anc
StepHypRef Expression
1 syl12anc.1 . 2 (𝜑𝜓)
2 syl12anc.2 . 2 (𝜑𝜒)
3 syl12anc.3 . 2 (𝜑𝜃)
4 syl22anc.4 . . 3 (𝜑𝜏)
5 syl23anc.5 . . 3 (𝜑𝜂)
64, 5jca 555 . 2 (𝜑 → (𝜏𝜂))
7 syl33anc.6 . 2 (𝜑𝜁)
8 syl133anc.7 . 2 (𝜑𝜎)
9 syl233anc.8 . 2 (𝜑𝜌)
10 syl323anc.9 . 2 (((𝜓𝜒𝜃) ∧ (𝜏𝜂) ∧ (𝜁𝜎𝜌)) → 𝜇)
111, 2, 3, 6, 7, 8, 9, 10syl313anc 1501 1 (𝜑𝜇)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 197  df-an 385  df-3an 1074 This theorem is referenced by:  4atlem11  35416  dalem52  35531  dath2  35544  dalawlem1  35678  dalaw  35693  cdlemb2  35848  4atexlem7  35882  cdleme7ga  36056  cdleme18a  36099  cdleme18c  36101  cdleme21f  36140  cdleme26f2ALTN  36172  cdleme26f2  36173  cdleme27a  36175  cdlemg17dN  36471  cdlemg18a  36486  cdlemg31d  36508  cdlemg48  36545  cdlemj1  36629  dihord4  37067
 Copyright terms: Public domain W3C validator