![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl311anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl12anc.1 | ⊢ (𝜑 → 𝜓) |
syl12anc.2 | ⊢ (𝜑 → 𝜒) |
syl12anc.3 | ⊢ (𝜑 → 𝜃) |
syl22anc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl311anc.6 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜁) |
Ref | Expression |
---|---|
syl311anc | ⊢ (𝜑 → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl12anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl12anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | syl12anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 1, 2, 3 | 3jca 1121 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
5 | syl22anc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
7 | syl311anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜁) | |
8 | 4, 5, 6, 7 | syl3anc 1475 | 1 ⊢ (𝜑 → 𝜁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 383 df-3an 1072 |
This theorem is referenced by: syl312anc 1496 syl321anc 1497 syl313anc 1499 syl331anc 1500 pythagtrip 15745 nmolb2d 22741 nmoleub 22754 clwwisshclwwslem 27161 numclwlk1lem2foa 27538 cvlcvr1 35141 4atlem12b 35412 dalawlem10 35681 dalawlem13 35684 dalawlem15 35686 osumcllem11N 35767 lhp2atne 35835 lhp2at0ne 35837 cdlemd 36009 ltrneq3 36010 cdleme7d 36048 cdlemeg49le 36313 cdleme 36362 cdlemg1a 36372 ltrniotavalbN 36386 cdlemg44 36535 cdlemk19 36671 cdlemk27-3 36709 cdlemk33N 36711 cdlemk34 36712 cdlemk49 36753 cdlemk53a 36757 cdlemk19u 36772 cdlemk56w 36775 dia2dimlem4 36870 dih1dimatlem0 37131 |
Copyright terms: Public domain | W3C validator |