![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2and | Structured version Visualization version GIF version |
Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
Ref | Expression |
---|---|
syl2and.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl2and.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
syl2and.3 | ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → 𝜂)) |
Ref | Expression |
---|---|
syl2and | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2and.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl2and.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
3 | syl2and.3 | . . 3 ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → 𝜂)) | |
4 | 2, 3 | sylan2d 498 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜂)) |
5 | 1, 4 | syland 497 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: anim12d 585 ax7 1989 dffi3 8378 cflim2 9123 axpre-sup 10028 xle2add 12127 fzen 12396 rpmulgcd2 15417 pcqmul 15605 initoeu1 16708 termoeu1 16715 plttr 17017 pospo 17020 lublecllem 17035 latjlej12 17114 latmlem12 17130 cygabl 18338 hausnei2 21205 uncmp 21254 itgsubst 23857 dvdsmulf1o 24965 2sqlem8a 25195 axcontlem9 25897 uspgr2wlkeq 26598 shintcli 28316 cvntr 29279 cdj3i 29428 bj-bary1 33292 heicant 33574 itg2addnc 33594 dihmeetlem1N 36896 fmtnofac2lem 41805 |
Copyright terms: Public domain | W3C validator |