![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2an2 | Structured version Visualization version GIF version |
Description: syl2an 495 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) |
Ref | Expression |
---|---|
syl2an2.1 | ⊢ (𝜑 → 𝜓) |
syl2an2.2 | ⊢ ((𝜒 ∧ 𝜑) → 𝜃) |
syl2an2.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl2an2 | ⊢ ((𝜒 ∧ 𝜑) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2an2.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl2an2.2 | . . 3 ⊢ ((𝜒 ∧ 𝜑) → 𝜃) | |
3 | syl2an2.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
4 | 1, 2, 3 | syl2an 495 | . 2 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜑)) → 𝜏) |
5 | 4 | anabss7 897 | 1 ⊢ ((𝜒 ∧ 𝜑) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: elrab3t 3504 reusv2lem3 5021 fvmpt2d 6457 fmptco 6561 fseqdom 9060 hashimarn 13440 divalgmod 15352 lcmfunsnlem2 15576 lcmflefac 15584 cncongr2 15605 usgr1v 26369 cplgr2vpr 26561 vtxdg0e 26602 wlknewwlksn 27018 wwlksnextwrd 27037 wwlksnwwlksnon 27055 wwlksnwwlksnonOLD 27057 clwlkclwwlklem2a4 27142 numclwwlk8 27582 esum2dlem 30485 fv1stcnv 32007 bj-restsnss 33361 bj-restsnss2 33362 k0004lem3 38968 |
Copyright terms: Public domain | W3C validator |