![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl23anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl12anc.1 | ⊢ (𝜑 → 𝜓) |
syl12anc.2 | ⊢ (𝜑 → 𝜒) |
syl12anc.3 | ⊢ (𝜑 → 𝜃) |
syl22anc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl23anc.6 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) |
Ref | Expression |
---|---|
syl23anc | ⊢ (𝜑 → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl12anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl12anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 1, 2 | jca 555 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
4 | syl12anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
5 | syl22anc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
7 | syl23anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) | |
8 | 3, 4, 5, 6, 7 | syl13anc 1479 | 1 ⊢ (𝜑 → 𝜁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: suppofss1d 7502 suppofss2d 7503 cnfcomlem 8771 ackbij1lem16 9269 div2subd 11063 symg2bas 18038 evl1expd 19931 psgndiflemA 20169 oftpos 20480 restopn2 21203 tsmsxp 22179 blcld 22531 metustexhalf 22582 cnllycmp 22976 dvlipcn 23976 tanregt0 24505 ostthlem1 25536 ax5seglem6 26034 axcontlem4 26067 axcontlem7 26070 wwlksnextwrd 27036 pnfneige0 30327 qqhval2 30356 esumcocn 30472 carsgmon 30706 bnj1125 31388 nosupbnd1lem1 32181 nosupbnd2 32189 heiborlem8 33948 2atjm 35252 1cvrat 35283 lvolnlelln 35391 lvolnlelpln 35392 4atlem3 35403 lplncvrlvol 35423 dalem39 35518 cdleme4a 36047 cdleme15 36086 cdleme16c 36088 cdleme19b 36112 cdleme19e 36115 cdleme20d 36120 cdleme20g 36123 cdleme20j 36126 cdleme20k 36127 cdleme20l2 36129 cdleme20l 36130 cdleme20m 36131 cdleme22e 36152 cdleme22eALTN 36153 cdleme22f 36154 cdleme27cl 36174 cdlemefr27cl 36211 mpaaeu 38240 |
Copyright terms: Public domain | W3C validator |