![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl222anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl12anc.1 | ⊢ (𝜑 → 𝜓) |
syl12anc.2 | ⊢ (𝜑 → 𝜒) |
syl12anc.3 | ⊢ (𝜑 → 𝜃) |
syl22anc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl33anc.6 | ⊢ (𝜑 → 𝜁) |
syl222anc.7 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) |
Ref | Expression |
---|---|
syl222anc | ⊢ (𝜑 → 𝜎) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl12anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl12anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl12anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
4 | syl22anc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
7 | 5, 6 | jca 553 | . 2 ⊢ (𝜑 → (𝜂 ∧ 𝜁)) |
8 | syl222anc.7 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) | |
9 | 1, 2, 3, 4, 7, 8 | syl221anc 1377 | 1 ⊢ (𝜑 → 𝜎) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1056 |
This theorem is referenced by: 3anandis 1474 3anandirs 1475 omopth2 7709 omeu 7710 dfac12lem2 9004 xaddass2 12118 xpncan 12119 divdenle 15504 pockthlem 15656 znidomb 19958 tanord1 24328 ang180lem5 24588 isosctrlem3 24595 log2tlbnd 24717 basellem1 24852 perfectlem2 25000 bposlem6 25059 dchrisum0flblem2 25243 pntpbnd1a 25319 axcontlem8 25896 xlt2addrd 29651 xrge0addass 29818 xrge0npcan 29822 submatminr1 30004 carsgclctunlem2 30509 4atexlemntlpq 35672 4atexlemnclw 35674 trlval2 35768 cdleme0moN 35830 cdleme16b 35884 cdleme16c 35885 cdleme16d 35886 cdleme16e 35887 cdleme17c 35893 cdlemeda 35903 cdleme20h 35921 cdleme20j 35923 cdleme20l2 35926 cdleme21c 35932 cdleme21ct 35934 cdleme22aa 35944 cdleme22cN 35947 cdleme22d 35948 cdleme22e 35949 cdleme22eALTN 35950 cdleme23b 35955 cdleme25a 35958 cdleme25dN 35961 cdleme27N 35974 cdleme28a 35975 cdleme28b 35976 cdleme29ex 35979 cdleme32c 36048 cdleme42k 36089 cdlemg2cex 36196 cdlemg2idN 36201 cdlemg31c 36304 cdlemk5a 36440 cdlemk5 36441 congmul 37851 jm2.25lem1 37882 jm2.26 37886 jm2.27a 37889 infleinflem1 39899 stoweidlem42 40577 |
Copyright terms: Public domain | W3C validator |