![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl221anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl12anc.1 | ⊢ (𝜑 → 𝜓) |
syl12anc.2 | ⊢ (𝜑 → 𝜒) |
syl12anc.3 | ⊢ (𝜑 → 𝜃) |
syl22anc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl221anc.6 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) |
Ref | Expression |
---|---|
syl221anc | ⊢ (𝜑 → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl12anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl12anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl12anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | syl22anc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
5 | 3, 4 | jca 555 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏)) |
6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
7 | syl221anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) | |
8 | 1, 2, 5, 6, 7 | syl211anc 1483 | 1 ⊢ (𝜑 → 𝜁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: syl222anc 1493 vtocldf 3396 f1oprswap 6342 dmdcand 11042 modmul12d 12938 modnegd 12939 modadd12d 12940 exprec 13115 splval2 13728 dvdsmodexp 15210 eulerthlem2 15709 fermltl 15711 odzdvds 15722 efgredleme 18376 efgredlemc 18378 blssps 22450 blss 22451 metequiv2 22536 met1stc 22547 met2ndci 22548 metdstri 22875 xlebnum 22985 caubl 23326 divcxp 24653 cxple2a 24665 cxplead 24687 cxplt2d 24692 cxple2d 24693 mulcxpd 24694 ang180 24764 wilthlem2 25015 lgsvalmod 25261 lgsmod 25268 lgsdir2lem4 25273 lgsdirprm 25276 lgsne0 25280 lgseisen 25324 ax5seglem9 26037 xrsmulgzz 30008 conway 32237 etasslt 32247 heiborlem8 33948 cdlemd4 36009 cdleme15a 36082 cdleme17b 36095 cdleme25a 36161 cdleme25c 36163 cdleme25dN 36164 cdleme26ee 36168 tendococl 36580 tendodi1 36592 tendodi2 36593 cdlemi 36628 tendocan 36632 cdlemk5a 36643 cdlemk5 36644 cdlemk10 36651 cdlemk5u 36669 cdlemkfid1N 36729 pellexlem6 37918 rpexpmord 38033 acongeq 38070 jm2.25 38086 stoweidlem42 40780 stoweidlem51 40789 ldepspr 42790 |
Copyright terms: Public domain | W3C validator |