![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl133anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl12anc.1 | ⊢ (𝜑 → 𝜓) |
syl12anc.2 | ⊢ (𝜑 → 𝜒) |
syl12anc.3 | ⊢ (𝜑 → 𝜃) |
syl22anc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl33anc.6 | ⊢ (𝜑 → 𝜁) |
syl133anc.7 | ⊢ (𝜑 → 𝜎) |
syl133anc.8 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) |
Ref | Expression |
---|---|
syl133anc | ⊢ (𝜑 → 𝜌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl12anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl12anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl12anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
4 | syl22anc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
7 | syl133anc.7 | . . 3 ⊢ (𝜑 → 𝜎) | |
8 | 5, 6, 7 | 3jca 1123 | . 2 ⊢ (𝜑 → (𝜂 ∧ 𝜁 ∧ 𝜎)) |
9 | syl133anc.8 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) | |
10 | 1, 2, 3, 4, 8, 9 | syl131anc 1490 | 1 ⊢ (𝜑 → 𝜌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: syl233anc 1506 mdetuni0 20649 frgrwopreg 27498 cgrtr4d 32419 cgrtrand 32427 cgrtr3and 32429 cgrcoml 32430 cgrextendand 32443 segconeu 32445 btwnouttr2 32456 cgr3tr4 32486 cgrxfr 32489 btwnxfr 32490 lineext 32510 brofs2 32511 brifs2 32512 fscgr 32514 btwnconn1lem2 32522 btwnconn1lem4 32524 btwnconn1lem8 32528 btwnconn1lem11 32531 brsegle2 32543 seglecgr12im 32544 segletr 32548 outsidele 32566 dalem13 35483 2llnma1b 35593 cdlemblem 35600 cdlemb 35601 lhpexle3 35819 lhpat 35850 4atex2-0bOLDN 35886 cdlemd4 36009 cdleme14 36081 cdleme19b 36112 cdleme20f 36122 cdleme20j 36126 cdleme20k 36127 cdleme20l2 36129 cdleme20 36132 cdleme22a 36148 cdleme22e 36152 cdleme26e 36167 cdleme28 36181 cdleme38n 36272 cdleme41sn4aw 36283 cdleme41snaw 36284 cdlemg6c 36428 cdlemg6 36431 cdlemg8c 36437 cdlemg9 36442 cdlemg10a 36448 cdlemg12c 36453 cdlemg12d 36454 cdlemg18d 36489 cdlemg18 36490 cdlemg20 36493 cdlemg21 36494 cdlemg22 36495 cdlemg28a 36501 cdlemg33b0 36509 cdlemg28b 36511 cdlemg33a 36514 cdlemg33 36519 cdlemg34 36520 cdlemg36 36522 cdlemg38 36523 cdlemg46 36543 cdlemk6 36645 cdlemki 36649 cdlemksv2 36655 cdlemk11 36657 cdlemk6u 36670 cdleml4N 36787 cdlemn11pre 37019 |
Copyright terms: Public domain | W3C validator |