![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sxval | Structured version Visualization version GIF version |
Description: Value of the product sigma-algebra operation. (Contributed by Thierry Arnoux, 1-Jun-2017.) |
Ref | Expression |
---|---|
sxval.1 | ⊢ 𝐴 = ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) |
Ref | Expression |
---|---|
sxval | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊) → (𝑆 ×s 𝑇) = (sigaGen‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3352 | . . 3 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
2 | elex 3352 | . . 3 ⊢ (𝑇 ∈ 𝑊 → 𝑇 ∈ V) | |
3 | id 22 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → 𝑠 = 𝑆) | |
4 | eqidd 2761 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → 𝑡 = 𝑡) | |
5 | eqidd 2761 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (𝑥 × 𝑦) = (𝑥 × 𝑦)) | |
6 | 3, 4, 5 | mpt2eq123dv 6883 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝑥 ∈ 𝑠, 𝑦 ∈ 𝑡 ↦ (𝑥 × 𝑦)) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑡 ↦ (𝑥 × 𝑦))) |
7 | 6 | rneqd 5508 | . . . . 5 ⊢ (𝑠 = 𝑆 → ran (𝑥 ∈ 𝑠, 𝑦 ∈ 𝑡 ↦ (𝑥 × 𝑦)) = ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑡 ↦ (𝑥 × 𝑦))) |
8 | 7 | fveq2d 6357 | . . . 4 ⊢ (𝑠 = 𝑆 → (sigaGen‘ran (𝑥 ∈ 𝑠, 𝑦 ∈ 𝑡 ↦ (𝑥 × 𝑦))) = (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑡 ↦ (𝑥 × 𝑦)))) |
9 | eqidd 2761 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → 𝑆 = 𝑆) | |
10 | id 22 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → 𝑡 = 𝑇) | |
11 | eqidd 2761 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (𝑥 × 𝑦) = (𝑥 × 𝑦)) | |
12 | 9, 10, 11 | mpt2eq123dv 6883 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑡 ↦ (𝑥 × 𝑦)) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦))) |
13 | 12 | rneqd 5508 | . . . . 5 ⊢ (𝑡 = 𝑇 → ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑡 ↦ (𝑥 × 𝑦)) = ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦))) |
14 | 13 | fveq2d 6357 | . . . 4 ⊢ (𝑡 = 𝑇 → (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑡 ↦ (𝑥 × 𝑦))) = (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)))) |
15 | df-sx 30582 | . . . 4 ⊢ ×s = (𝑠 ∈ V, 𝑡 ∈ V ↦ (sigaGen‘ran (𝑥 ∈ 𝑠, 𝑦 ∈ 𝑡 ↦ (𝑥 × 𝑦)))) | |
16 | fvex 6363 | . . . 4 ⊢ (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦))) ∈ V | |
17 | 8, 14, 15, 16 | ovmpt2 6962 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)))) |
18 | 1, 2, 17 | syl2an 495 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊) → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)))) |
19 | sxval.1 | . . 3 ⊢ 𝐴 = ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) | |
20 | 19 | fveq2i 6356 | . 2 ⊢ (sigaGen‘𝐴) = (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦))) |
21 | 18, 20 | syl6eqr 2812 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊) → (𝑆 ×s 𝑇) = (sigaGen‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 × cxp 5264 ran crn 5267 ‘cfv 6049 (class class class)co 6814 ↦ cmpt2 6816 sigaGencsigagen 30531 ×s csx 30581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-iota 6012 df-fun 6051 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-sx 30582 |
This theorem is referenced by: sxsiga 30584 sxsigon 30585 elsx 30587 mbfmco2 30657 sxbrsigalem5 30680 sxbrsiga 30682 |
Copyright terms: Public domain | W3C validator |