Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxbrsigalem5 Structured version   Visualization version   GIF version

Theorem sxbrsigalem5 30690
Description: First direction for sxbrsiga 30692. (Contributed by Thierry Arnoux, 22-Sep-2017.) (Revised by Thierry Arnoux, 11-Oct-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
Assertion
Ref Expression
sxbrsigalem5 (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (𝔅 ×s 𝔅)
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼,𝑥   𝑢,𝑛,𝑣   𝑅,𝑛,𝑥   𝑥,𝐽,𝑢,𝑣
Allowed substitution hints:   𝑅(𝑣,𝑢)   𝐼(𝑛)   𝐽(𝑛)

Proof of Theorem sxbrsigalem5
Dummy variables 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sxbrsiga.0 . . . . 5 𝐽 = (topGen‘ran (,))
2 dya2ioc.1 . . . . 5 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
3 dya2ioc.2 . . . . 5 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
41, 2, 3dya2iocucvr 30686 . . . 4 ran 𝑅 = (ℝ × ℝ)
5 br2base 30671 . . . 4 ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) = (ℝ × ℝ)
64, 5eqtr4i 2796 . . 3 ran 𝑅 = ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))
7 brsigarn 30587 . . . . . . 7 𝔅 ∈ (sigAlgebra‘ℝ)
87elexi 3365 . . . . . 6 𝔅 ∈ V
98, 8mpt2ex 7397 . . . . 5 (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) ∈ V
109rnex 7247 . . . 4 ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) ∈ V
111, 2dya2icobrsiga 30678 . . . . . . . . . 10 ran 𝐼 ⊆ 𝔅
1211sseli 3748 . . . . . . . . 9 (𝑢 ∈ ran 𝐼𝑢 ∈ 𝔅)
1311sseli 3748 . . . . . . . . 9 (𝑣 ∈ ran 𝐼𝑣 ∈ 𝔅)
1412, 13anim12i 600 . . . . . . . 8 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (𝑢 ∈ 𝔅𝑣 ∈ 𝔅))
1514anim1i 602 . . . . . . 7 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑔 = (𝑢 × 𝑣)) → ((𝑢 ∈ 𝔅𝑣 ∈ 𝔅) ∧ 𝑔 = (𝑢 × 𝑣)))
1615ssoprab2i 6896 . . . . . 6 {⟨⟨𝑢, 𝑣⟩, 𝑔⟩ ∣ ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑔 = (𝑢 × 𝑣))} ⊆ {⟨⟨𝑢, 𝑣⟩, 𝑔⟩ ∣ ((𝑢 ∈ 𝔅𝑣 ∈ 𝔅) ∧ 𝑔 = (𝑢 × 𝑣))}
17 df-mpt2 6798 . . . . . . 7 (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) = {⟨⟨𝑢, 𝑣⟩, 𝑔⟩ ∣ ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑔 = (𝑢 × 𝑣))}
183, 17eqtri 2793 . . . . . 6 𝑅 = {⟨⟨𝑢, 𝑣⟩, 𝑔⟩ ∣ ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑔 = (𝑢 × 𝑣))}
19 xpeq1 5263 . . . . . . . 8 (𝑒 = 𝑢 → (𝑒 × 𝑓) = (𝑢 × 𝑓))
20 xpeq2 5269 . . . . . . . 8 (𝑓 = 𝑣 → (𝑢 × 𝑓) = (𝑢 × 𝑣))
2119, 20cbvmpt2v 6882 . . . . . . 7 (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) = (𝑢 ∈ 𝔅, 𝑣 ∈ 𝔅 ↦ (𝑢 × 𝑣))
22 df-mpt2 6798 . . . . . . 7 (𝑢 ∈ 𝔅, 𝑣 ∈ 𝔅 ↦ (𝑢 × 𝑣)) = {⟨⟨𝑢, 𝑣⟩, 𝑔⟩ ∣ ((𝑢 ∈ 𝔅𝑣 ∈ 𝔅) ∧ 𝑔 = (𝑢 × 𝑣))}
2321, 22eqtri 2793 . . . . . 6 (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) = {⟨⟨𝑢, 𝑣⟩, 𝑔⟩ ∣ ((𝑢 ∈ 𝔅𝑣 ∈ 𝔅) ∧ 𝑔 = (𝑢 × 𝑣))}
2416, 18, 233sstr4i 3793 . . . . 5 𝑅 ⊆ (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))
25 rnss 5492 . . . . 5 (𝑅 ⊆ (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) → ran 𝑅 ⊆ ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)))
2624, 25ax-mp 5 . . . 4 ran 𝑅 ⊆ ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))
27 sssigagen2 30549 . . . 4 ((ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) ∈ V ∧ ran 𝑅 ⊆ ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))) → ran 𝑅 ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))))
2810, 26, 27mp2an 672 . . 3 ran 𝑅 ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)))
29 sigagenss2 30553 . . 3 (( ran 𝑅 = ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) ∧ ran 𝑅 ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))) ∧ ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) ∈ V) → (sigaGen‘ran 𝑅) ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))))
306, 28, 10, 29mp3an 1572 . 2 (sigaGen‘ran 𝑅) ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)))
311, 2, 3sxbrsigalem4 30689 . 2 (sigaGen‘(𝐽 ×t 𝐽)) = (sigaGen‘ran 𝑅)
32 eqid 2771 . . . 4 ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) = ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))
3332sxval 30593 . . 3 ((𝔅 ∈ (sigAlgebra‘ℝ) ∧ 𝔅 ∈ (sigAlgebra‘ℝ)) → (𝔅 ×s 𝔅) = (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))))
347, 7, 33mp2an 672 . 2 (𝔅 ×s 𝔅) = (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)))
3530, 31, 343sstr4i 3793 1 (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (𝔅 ×s 𝔅)
Colors of variables: wff setvar class
Syntax hints:  wa 382   = wceq 1631  wcel 2145  Vcvv 3351  wss 3723   cuni 4574   × cxp 5247  ran crn 5250  cfv 6031  (class class class)co 6793  {coprab 6794  cmpt2 6795  cr 10137  1c1 10139   + caddc 10141   / cdiv 10886  2c2 11272  cz 11579  (,)cioo 12380  [,)cico 12382  cexp 13067  topGenctg 16306   ×t ctx 21584  sigAlgebracsiga 30510  sigaGencsigagen 30541  𝔅cbrsiga 30584   ×s csx 30591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-ac2 9487  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-omul 7718  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-acn 8968  df-ac 9139  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-ef 15004  df-sin 15006  df-cos 15007  df-pi 15009  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-refld 20168  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-cmp 21411  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-fcls 21965  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-cfil 23272  df-cmet 23274  df-cms 23351  df-limc 23850  df-dv 23851  df-log 24524  df-cxp 24525  df-logb 24724  df-siga 30511  df-sigagen 30542  df-brsiga 30585  df-sx 30592
This theorem is referenced by:  sxbrsigalem6  30691
  Copyright terms: Public domain W3C validator