Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxbrsigalem2 Structured version   Visualization version   GIF version

Theorem sxbrsigalem2 30688
Description: The sigma-algebra generated by the dyadic closed-below, open-above rectangular subsets of (ℝ × ℝ) is a subset of the sigma-algebra generated by the closed half-spaces of (ℝ × ℝ). The proof goes by noting the fact that the dyadic rectangles are intersections of a 'vertical band' and an 'horizontal band', which themselves are differences of closed half-spaces. (Contributed by Thierry Arnoux, 17-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
Assertion
Ref Expression
sxbrsigalem2 (sigaGen‘ran 𝑅) ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼,𝑥   𝑢,𝑛,𝑣   𝑅,𝑛,𝑥   𝑥,𝐽   𝑒,𝑓,𝑛,𝑢,𝑣,𝑥
Allowed substitution hints:   𝑅(𝑣,𝑢,𝑒,𝑓)   𝐼(𝑒,𝑓,𝑛)   𝐽(𝑣,𝑢,𝑒,𝑓,𝑛)

Proof of Theorem sxbrsigalem2
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 sxbrsiga.0 . . . 4 𝐽 = (topGen‘ran (,))
2 dya2ioc.1 . . . 4 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
3 dya2ioc.2 . . . 4 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
41, 2, 3dya2iocucvr 30686 . . 3 ran 𝑅 = (ℝ × ℝ)
5 sxbrsigalem0 30673 . . 3 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (ℝ × ℝ)
64, 5eqtr4i 2796 . 2 ran 𝑅 = (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
7 vex 3354 . . . . . 6 𝑢 ∈ V
8 vex 3354 . . . . . 6 𝑣 ∈ V
97, 8xpex 7113 . . . . 5 (𝑢 × 𝑣) ∈ V
103, 9elrnmpt2 6924 . . . 4 (𝑑 ∈ ran 𝑅 ↔ ∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼 𝑑 = (𝑢 × 𝑣))
11 simpr 471 . . . . . . 7 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → 𝑑 = (𝑢 × 𝑣))
121, 2dya2icobrsiga 30678 . . . . . . . . . . . . 13 ran 𝐼 ⊆ 𝔅
13 brsigasspwrn 30588 . . . . . . . . . . . . 13 𝔅 ⊆ 𝒫 ℝ
1412, 13sstri 3761 . . . . . . . . . . . 12 ran 𝐼 ⊆ 𝒫 ℝ
1514sseli 3748 . . . . . . . . . . 11 (𝑢 ∈ ran 𝐼𝑢 ∈ 𝒫 ℝ)
1615elpwid 4310 . . . . . . . . . 10 (𝑢 ∈ ran 𝐼𝑢 ⊆ ℝ)
1714sseli 3748 . . . . . . . . . . 11 (𝑣 ∈ ran 𝐼𝑣 ∈ 𝒫 ℝ)
1817elpwid 4310 . . . . . . . . . 10 (𝑣 ∈ ran 𝐼𝑣 ⊆ ℝ)
19 xpinpreima2 30293 . . . . . . . . . 10 ((𝑢 ⊆ ℝ ∧ 𝑣 ⊆ ℝ) → (𝑢 × 𝑣) = (((1st ↾ (ℝ × ℝ)) “ 𝑢) ∩ ((2nd ↾ (ℝ × ℝ)) “ 𝑣)))
2016, 18, 19syl2an 583 . . . . . . . . 9 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (𝑢 × 𝑣) = (((1st ↾ (ℝ × ℝ)) “ 𝑢) ∩ ((2nd ↾ (ℝ × ℝ)) “ 𝑣)))
21 reex 10233 . . . . . . . . . . . . . . . . 17 ℝ ∈ V
2221mptex 6633 . . . . . . . . . . . . . . . 16 (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∈ V
2322rnex 7251 . . . . . . . . . . . . . . 15 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∈ V
2421mptex 6633 . . . . . . . . . . . . . . . 16 (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ∈ V
2524rnex 7251 . . . . . . . . . . . . . . 15 ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ∈ V
2623, 25unex 7107 . . . . . . . . . . . . . 14 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V
2726a1i 11 . . . . . . . . . . . . 13 (⊤ → (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V)
2827sgsiga 30545 . . . . . . . . . . . 12 (⊤ → (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra)
2928trud 1641 . . . . . . . . . . 11 (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra
3029a1i 11 . . . . . . . . . 10 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra)
31 1stpreima 29824 . . . . . . . . . . . . 13 (𝑢 ⊆ ℝ → ((1st ↾ (ℝ × ℝ)) “ 𝑢) = (𝑢 × ℝ))
3216, 31syl 17 . . . . . . . . . . . 12 (𝑢 ∈ ran 𝐼 → ((1st ↾ (ℝ × ℝ)) “ 𝑢) = (𝑢 × ℝ))
33 ovex 6827 . . . . . . . . . . . . . 14 ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V
342, 33elrnmpt2 6924 . . . . . . . . . . . . 13 (𝑢 ∈ ran 𝐼 ↔ ∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
35 simpr 471 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
3635xpeq1d 5278 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (𝑢 × ℝ) = (((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) × ℝ))
37 difxp1 5699 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞)) × ℝ) = ((((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∖ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ))
38 simpl 468 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℤ)
3938zred 11689 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℝ)
40 2rp 12040 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℝ+
4140a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 2 ∈ ℝ+)
42 simpr 471 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
4341, 42rpexpcld 13239 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2↑𝑛) ∈ ℝ+)
4439, 43rerpdivcld 12106 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 / (2↑𝑛)) ∈ ℝ)
4544rexrd 10295 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 / (2↑𝑛)) ∈ ℝ*)
46 1red 10261 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 1 ∈ ℝ)
4739, 46readdcld 10275 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 + 1) ∈ ℝ)
4847, 43rerpdivcld 12106 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ)
4948rexrd 10295 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ*)
50 pnfxr 10298 . . . . . . . . . . . . . . . . . . . . . 22 +∞ ∈ ℝ*
5150a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → +∞ ∈ ℝ*)
5239lep1d 11161 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑥 ≤ (𝑥 + 1))
5339, 47, 43, 52lediv1dd 12133 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 / (2↑𝑛)) ≤ ((𝑥 + 1) / (2↑𝑛)))
54 pnfge 12169 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 + 1) / (2↑𝑛)) ∈ ℝ* → ((𝑥 + 1) / (2↑𝑛)) ≤ +∞)
5549, 54syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 + 1) / (2↑𝑛)) ≤ +∞)
56 difico 29885 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥 / (2↑𝑛)) ∈ ℝ* ∧ ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ ((𝑥 / (2↑𝑛)) ≤ ((𝑥 + 1) / (2↑𝑛)) ∧ ((𝑥 + 1) / (2↑𝑛)) ≤ +∞)) → (((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
5745, 49, 51, 53, 55, 56syl32anc 1484 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
5857xpeq1d 5278 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞)) × ℝ) = (((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) × ℝ))
5937, 58syl5reqr 2820 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) × ℝ) = ((((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∖ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ)))
6029a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra)
61 ssun1 3927 . . . . . . . . . . . . . . . . . . . . 21 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ⊆ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
62 eqid 2771 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = (((𝑥 / (2↑𝑛))[,)+∞) × ℝ)
63 oveq1 6803 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑒 = (𝑥 / (2↑𝑛)) → (𝑒[,)+∞) = ((𝑥 / (2↑𝑛))[,)+∞))
6463xpeq1d 5278 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑒 = (𝑥 / (2↑𝑛)) → ((𝑒[,)+∞) × ℝ) = (((𝑥 / (2↑𝑛))[,)+∞) × ℝ))
6564eqeq2d 2781 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒 = (𝑥 / (2↑𝑛)) → ((((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ) ↔ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = (((𝑥 / (2↑𝑛))[,)+∞) × ℝ)))
6665rspcev 3460 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 / (2↑𝑛)) ∈ ℝ ∧ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = (((𝑥 / (2↑𝑛))[,)+∞) × ℝ)) → ∃𝑒 ∈ ℝ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
6744, 62, 66sylancl 574 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ∃𝑒 ∈ ℝ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
68 eqid 2771 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) = (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))
69 ovex 6827 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒[,)+∞) ∈ V
7069, 21xpex 7113 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑒[,)+∞) × ℝ) ∈ V
7168, 70elrnmpti 5513 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ↔ ∃𝑒 ∈ ℝ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
7267, 71sylibr 224 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)))
7361, 72sseldi 3750 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
74 elsigagen 30550 . . . . . . . . . . . . . . . . . . . 20 (((ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V ∧ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) → (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
7526, 73, 74sylancr 575 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
76 eqid 2771 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ)
77 oveq1 6803 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑒 = ((𝑥 + 1) / (2↑𝑛)) → (𝑒[,)+∞) = (((𝑥 + 1) / (2↑𝑛))[,)+∞))
7877xpeq1d 5278 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑒 = ((𝑥 + 1) / (2↑𝑛)) → ((𝑒[,)+∞) × ℝ) = ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ))
7978eqeq2d 2781 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒 = ((𝑥 + 1) / (2↑𝑛)) → (((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ) ↔ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ)))
8079rspcev 3460 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑥 + 1) / (2↑𝑛)) ∈ ℝ ∧ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ)) → ∃𝑒 ∈ ℝ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
8148, 76, 80sylancl 574 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ∃𝑒 ∈ ℝ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
8268, 70elrnmpti 5513 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ↔ ∃𝑒 ∈ ℝ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
8381, 82sylibr 224 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)))
8461, 83sseldi 3750 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
85 elsigagen 30550 . . . . . . . . . . . . . . . . . . . 20 (((ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V ∧ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) → ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
8626, 84, 85sylancr 575 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
87 difelsiga 30536 . . . . . . . . . . . . . . . . . . 19 (((sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra ∧ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∧ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))) → ((((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∖ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
8860, 75, 86, 87syl3anc 1476 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∖ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
8959, 88eqeltrd 2850 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
9089adantr 466 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
9136, 90eqeltrd 2850 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (𝑢 × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
9291ex 397 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → (𝑢 × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))))
9392rexlimivv 3184 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → (𝑢 × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
9434, 93sylbi 207 . . . . . . . . . . . 12 (𝑢 ∈ ran 𝐼 → (𝑢 × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
9532, 94eqeltrd 2850 . . . . . . . . . . 11 (𝑢 ∈ ran 𝐼 → ((1st ↾ (ℝ × ℝ)) “ 𝑢) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
9695adantr 466 . . . . . . . . . 10 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → ((1st ↾ (ℝ × ℝ)) “ 𝑢) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
97 2ndpreima 29825 . . . . . . . . . . . . 13 (𝑣 ⊆ ℝ → ((2nd ↾ (ℝ × ℝ)) “ 𝑣) = (ℝ × 𝑣))
9818, 97syl 17 . . . . . . . . . . . 12 (𝑣 ∈ ran 𝐼 → ((2nd ↾ (ℝ × ℝ)) “ 𝑣) = (ℝ × 𝑣))
992, 33elrnmpt2 6924 . . . . . . . . . . . . 13 (𝑣 ∈ ran 𝐼 ↔ ∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
100 simpr 471 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
101100xpeq2d 5279 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (ℝ × 𝑣) = (ℝ × ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))))
102 difxp2 5700 . . . . . . . . . . . . . . . . . . 19 (ℝ × (((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞))) = ((ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∖ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)))
10357xpeq2d 5279 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × (((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞))) = (ℝ × ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))))
104102, 103syl5reqr 2820 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) = ((ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∖ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞))))
105 ssun2 3928 . . . . . . . . . . . . . . . . . . . . 21 ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ⊆ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
106 eqid 2771 . . . . . . . . . . . . . . . . . . . . . . 23 (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × ((𝑥 / (2↑𝑛))[,)+∞))
107 oveq1 6803 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = (𝑥 / (2↑𝑛)) → (𝑓[,)+∞) = ((𝑥 / (2↑𝑛))[,)+∞))
108107xpeq2d 5279 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = (𝑥 / (2↑𝑛)) → (ℝ × (𝑓[,)+∞)) = (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)))
109108eqeq2d 2781 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = (𝑥 / (2↑𝑛)) → ((ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)) ↔ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × ((𝑥 / (2↑𝑛))[,)+∞))))
110109rspcev 3460 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 / (2↑𝑛)) ∈ ℝ ∧ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × ((𝑥 / (2↑𝑛))[,)+∞))) → ∃𝑓 ∈ ℝ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
11144, 106, 110sylancl 574 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ∃𝑓 ∈ ℝ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
112 eqid 2771 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) = (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))
113 ovex 6827 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓[,)+∞) ∈ V
11421, 113xpex 7113 . . . . . . . . . . . . . . . . . . . . . . 23 (ℝ × (𝑓[,)+∞)) ∈ V
115112, 114elrnmpti 5513 . . . . . . . . . . . . . . . . . . . . . 22 ((ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ↔ ∃𝑓 ∈ ℝ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
116111, 115sylibr 224 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
117105, 116sseldi 3750 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
118 elsigagen 30550 . . . . . . . . . . . . . . . . . . . 20 (((ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V ∧ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) → (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
11926, 117, 118sylancr 575 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
120 eqid 2771 . . . . . . . . . . . . . . . . . . . . . . 23 (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞))
121 oveq1 6803 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = ((𝑥 + 1) / (2↑𝑛)) → (𝑓[,)+∞) = (((𝑥 + 1) / (2↑𝑛))[,)+∞))
122121xpeq2d 5279 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = ((𝑥 + 1) / (2↑𝑛)) → (ℝ × (𝑓[,)+∞)) = (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)))
123122eqeq2d 2781 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = ((𝑥 + 1) / (2↑𝑛)) → ((ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)) ↔ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞))))
124123rspcev 3460 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑥 + 1) / (2↑𝑛)) ∈ ℝ ∧ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞))) → ∃𝑓 ∈ ℝ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
12548, 120, 124sylancl 574 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ∃𝑓 ∈ ℝ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
126112, 114elrnmpti 5513 . . . . . . . . . . . . . . . . . . . . . 22 ((ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ↔ ∃𝑓 ∈ ℝ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
127125, 126sylibr 224 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
128105, 127sseldi 3750 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
129 elsigagen 30550 . . . . . . . . . . . . . . . . . . . 20 (((ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V ∧ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) → (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
13026, 128, 129sylancr 575 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
131 difelsiga 30536 . . . . . . . . . . . . . . . . . . 19 (((sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra ∧ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∧ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))) → ((ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∖ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞))) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
13260, 119, 130, 131syl3anc 1476 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∖ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞))) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
133104, 132eqeltrd 2850 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
134133adantr 466 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (ℝ × ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
135101, 134eqeltrd 2850 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (ℝ × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
136135ex 397 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → (ℝ × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))))
137136rexlimivv 3184 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → (ℝ × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
13899, 137sylbi 207 . . . . . . . . . . . 12 (𝑣 ∈ ran 𝐼 → (ℝ × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
13998, 138eqeltrd 2850 . . . . . . . . . . 11 (𝑣 ∈ ran 𝐼 → ((2nd ↾ (ℝ × ℝ)) “ 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
140139adantl 467 . . . . . . . . . 10 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → ((2nd ↾ (ℝ × ℝ)) “ 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
141 inelsiga 30538 . . . . . . . . . 10 (((sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra ∧ ((1st ↾ (ℝ × ℝ)) “ 𝑢) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∧ ((2nd ↾ (ℝ × ℝ)) “ 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))) → (((1st ↾ (ℝ × ℝ)) “ 𝑢) ∩ ((2nd ↾ (ℝ × ℝ)) “ 𝑣)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
14230, 96, 140, 141syl3anc 1476 . . . . . . . . 9 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (((1st ↾ (ℝ × ℝ)) “ 𝑢) ∩ ((2nd ↾ (ℝ × ℝ)) “ 𝑣)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
14320, 142eqeltrd 2850 . . . . . . . 8 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (𝑢 × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
144143adantr 466 . . . . . . 7 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → (𝑢 × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
14511, 144eqeltrd 2850 . . . . . 6 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → 𝑑 ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
146145ex 397 . . . . 5 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (𝑑 = (𝑢 × 𝑣) → 𝑑 ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))))
147146rexlimivv 3184 . . . 4 (∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼 𝑑 = (𝑢 × 𝑣) → 𝑑 ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
14810, 147sylbi 207 . . 3 (𝑑 ∈ ran 𝑅𝑑 ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
149148ssriv 3756 . 2 ran 𝑅 ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
150 sigagenss2 30553 . 2 (( ran 𝑅 = (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∧ ran 𝑅 ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∧ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V) → (sigaGen‘ran 𝑅) ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
1516, 149, 26, 150mp3an 1572 1 (sigaGen‘ran 𝑅) ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
Colors of variables: wff setvar class
Syntax hints:  wa 382   = wceq 1631  wtru 1632  wcel 2145  wrex 3062  Vcvv 3351  cdif 3720  cun 3721  cin 3722  wss 3723  𝒫 cpw 4298   cuni 4575   class class class wbr 4787  cmpt 4864   × cxp 5248  ccnv 5249  ran crn 5251  cres 5252  cima 5253  cfv 6030  (class class class)co 6796  cmpt2 6798  1st c1st 7317  2nd c2nd 7318  cr 10141  1c1 10143   + caddc 10145  +∞cpnf 10277  *cxr 10279  cle 10281   / cdiv 10890  2c2 11276  cz 11584  +crp 12035  (,)cioo 12380  [,)cico 12382  cexp 13067  topGenctg 16306  sigAlgebracsiga 30510  sigaGencsigagen 30541  𝔅cbrsiga 30584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-ac2 9491  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220  ax-addf 10221  ax-mulf 10222
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-supp 7451  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7900  df-map 8015  df-pm 8016  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8436  df-fi 8477  df-sup 8508  df-inf 8509  df-oi 8575  df-card 8969  df-acn 8972  df-ac 9143  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-ef 15004  df-sin 15006  df-cos 15007  df-pi 15009  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-refld 20168  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-cmp 21411  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-fcls 21965  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-cfil 23272  df-cmet 23274  df-cms 23351  df-limc 23850  df-dv 23851  df-log 24524  df-cxp 24525  df-logb 24724  df-siga 30511  df-sigagen 30542  df-brsiga 30585
This theorem is referenced by:  sxbrsigalem4  30689
  Copyright terms: Public domain W3C validator