Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxbrsigalem0 Structured version   Visualization version   GIF version

Theorem sxbrsigalem0 30673
 Description: The closed half-spaces of (ℝ × ℝ) cover (ℝ × ℝ). (Contributed by Thierry Arnoux, 11-Oct-2017.)
Assertion
Ref Expression
sxbrsigalem0 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (ℝ × ℝ)
Distinct variable group:   𝑒,𝑓

Proof of Theorem sxbrsigalem0
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 unissb 4606 . . 3 ( (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ⊆ (ℝ × ℝ) ↔ ∀𝑧 ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))𝑧 ⊆ (ℝ × ℝ))
2 elun 3904 . . . 4 (𝑧 ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ↔ (𝑧 ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∨ 𝑧 ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
3 eqid 2771 . . . . . . . . 9 (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) = (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))
43rnmptss 6537 . . . . . . . 8 (∀𝑒 ∈ ℝ ((𝑒[,)+∞) × ℝ) ∈ 𝒫 (ℝ × ℝ) → ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ⊆ 𝒫 (ℝ × ℝ))
5 pnfxr 10298 . . . . . . . . . . 11 +∞ ∈ ℝ*
6 icossre 12459 . . . . . . . . . . 11 ((𝑒 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑒[,)+∞) ⊆ ℝ)
75, 6mpan2 671 . . . . . . . . . 10 (𝑒 ∈ ℝ → (𝑒[,)+∞) ⊆ ℝ)
8 xpss1 5268 . . . . . . . . . 10 ((𝑒[,)+∞) ⊆ ℝ → ((𝑒[,)+∞) × ℝ) ⊆ (ℝ × ℝ))
97, 8syl 17 . . . . . . . . 9 (𝑒 ∈ ℝ → ((𝑒[,)+∞) × ℝ) ⊆ (ℝ × ℝ))
10 ovex 6827 . . . . . . . . . . 11 (𝑒[,)+∞) ∈ V
11 reex 10233 . . . . . . . . . . 11 ℝ ∈ V
1210, 11xpex 7113 . . . . . . . . . 10 ((𝑒[,)+∞) × ℝ) ∈ V
1312elpw 4304 . . . . . . . . 9 (((𝑒[,)+∞) × ℝ) ∈ 𝒫 (ℝ × ℝ) ↔ ((𝑒[,)+∞) × ℝ) ⊆ (ℝ × ℝ))
149, 13sylibr 224 . . . . . . . 8 (𝑒 ∈ ℝ → ((𝑒[,)+∞) × ℝ) ∈ 𝒫 (ℝ × ℝ))
154, 14mprg 3075 . . . . . . 7 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ⊆ 𝒫 (ℝ × ℝ)
1615sseli 3748 . . . . . 6 (𝑧 ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) → 𝑧 ∈ 𝒫 (ℝ × ℝ))
1716elpwid 4310 . . . . 5 (𝑧 ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) → 𝑧 ⊆ (ℝ × ℝ))
18 eqid 2771 . . . . . . . . 9 (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) = (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))
1918rnmptss 6537 . . . . . . . 8 (∀𝑓 ∈ ℝ (ℝ × (𝑓[,)+∞)) ∈ 𝒫 (ℝ × ℝ) → ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ⊆ 𝒫 (ℝ × ℝ))
20 icossre 12459 . . . . . . . . . . 11 ((𝑓 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑓[,)+∞) ⊆ ℝ)
215, 20mpan2 671 . . . . . . . . . 10 (𝑓 ∈ ℝ → (𝑓[,)+∞) ⊆ ℝ)
22 xpss2 5269 . . . . . . . . . 10 ((𝑓[,)+∞) ⊆ ℝ → (ℝ × (𝑓[,)+∞)) ⊆ (ℝ × ℝ))
2321, 22syl 17 . . . . . . . . 9 (𝑓 ∈ ℝ → (ℝ × (𝑓[,)+∞)) ⊆ (ℝ × ℝ))
24 ovex 6827 . . . . . . . . . . 11 (𝑓[,)+∞) ∈ V
2511, 24xpex 7113 . . . . . . . . . 10 (ℝ × (𝑓[,)+∞)) ∈ V
2625elpw 4304 . . . . . . . . 9 ((ℝ × (𝑓[,)+∞)) ∈ 𝒫 (ℝ × ℝ) ↔ (ℝ × (𝑓[,)+∞)) ⊆ (ℝ × ℝ))
2723, 26sylibr 224 . . . . . . . 8 (𝑓 ∈ ℝ → (ℝ × (𝑓[,)+∞)) ∈ 𝒫 (ℝ × ℝ))
2819, 27mprg 3075 . . . . . . 7 ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ⊆ 𝒫 (ℝ × ℝ)
2928sseli 3748 . . . . . 6 (𝑧 ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) → 𝑧 ∈ 𝒫 (ℝ × ℝ))
3029elpwid 4310 . . . . 5 (𝑧 ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) → 𝑧 ⊆ (ℝ × ℝ))
3117, 30jaoi 846 . . . 4 ((𝑧 ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∨ 𝑧 ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) → 𝑧 ⊆ (ℝ × ℝ))
322, 31sylbi 207 . . 3 (𝑧 ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) → 𝑧 ⊆ (ℝ × ℝ))
331, 32mprgbir 3076 . 2 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ⊆ (ℝ × ℝ)
34 funmpt 6068 . . . . . 6 Fun (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))
35 rexr 10291 . . . . . . . . . . 11 ((1st𝑧) ∈ ℝ → (1st𝑧) ∈ ℝ*)
365a1i 11 . . . . . . . . . . 11 ((1st𝑧) ∈ ℝ → +∞ ∈ ℝ*)
37 ltpnf 12159 . . . . . . . . . . 11 ((1st𝑧) ∈ ℝ → (1st𝑧) < +∞)
38 lbico1 12433 . . . . . . . . . . 11 (((1st𝑧) ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (1st𝑧) < +∞) → (1st𝑧) ∈ ((1st𝑧)[,)+∞))
3935, 36, 37, 38syl3anc 1476 . . . . . . . . . 10 ((1st𝑧) ∈ ℝ → (1st𝑧) ∈ ((1st𝑧)[,)+∞))
4039anim1i 602 . . . . . . . . 9 (((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ) → ((1st𝑧) ∈ ((1st𝑧)[,)+∞) ∧ (2nd𝑧) ∈ ℝ))
4140anim2i 603 . . . . . . . 8 ((𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ)) → (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ ((1st𝑧)[,)+∞) ∧ (2nd𝑧) ∈ ℝ)))
42 elxp7 7354 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) ↔ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ)))
43 elxp7 7354 . . . . . . . 8 (𝑧 ∈ (((1st𝑧)[,)+∞) × ℝ) ↔ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ ((1st𝑧)[,)+∞) ∧ (2nd𝑧) ∈ ℝ)))
4441, 42, 433imtr4i 281 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → 𝑧 ∈ (((1st𝑧)[,)+∞) × ℝ))
45 xp1st 7351 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (1st𝑧) ∈ ℝ)
46 oveq1 6803 . . . . . . . . . 10 (𝑒 = (1st𝑧) → (𝑒[,)+∞) = ((1st𝑧)[,)+∞))
4746xpeq1d 5278 . . . . . . . . 9 (𝑒 = (1st𝑧) → ((𝑒[,)+∞) × ℝ) = (((1st𝑧)[,)+∞) × ℝ))
48 ovex 6827 . . . . . . . . . 10 ((1st𝑧)[,)+∞) ∈ V
4948, 11xpex 7113 . . . . . . . . 9 (((1st𝑧)[,)+∞) × ℝ) ∈ V
5047, 3, 49fvmpt 6426 . . . . . . . 8 ((1st𝑧) ∈ ℝ → ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘(1st𝑧)) = (((1st𝑧)[,)+∞) × ℝ))
5145, 50syl 17 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘(1st𝑧)) = (((1st𝑧)[,)+∞) × ℝ))
5244, 51eleqtrrd 2853 . . . . . 6 (𝑧 ∈ (ℝ × ℝ) → 𝑧 ∈ ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘(1st𝑧)))
53 elunirn2 29791 . . . . . 6 ((Fun (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∧ 𝑧 ∈ ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘(1st𝑧))) → 𝑧 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)))
5434, 52, 53sylancr 575 . . . . 5 (𝑧 ∈ (ℝ × ℝ) → 𝑧 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)))
5554ssriv 3756 . . . 4 (ℝ × ℝ) ⊆ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))
56 ssun3 3929 . . . 4 ((ℝ × ℝ) ⊆ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) → (ℝ × ℝ) ⊆ ( ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
5755, 56ax-mp 5 . . 3 (ℝ × ℝ) ⊆ ( ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
58 uniun 4594 . . 3 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = ( ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
5957, 58sseqtr4i 3787 . 2 (ℝ × ℝ) ⊆ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
6033, 59eqssi 3768 1 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (ℝ × ℝ)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 382   ∨ wo 836   = wceq 1631   ∈ wcel 2145  Vcvv 3351   ∪ cun 3721   ⊆ wss 3723  𝒫 cpw 4298  ∪ cuni 4575   class class class wbr 4787   ↦ cmpt 4864   × cxp 5248  ran crn 5251  Fun wfun 6024  ‘cfv 6030  (class class class)co 6796  1st c1st 7317  2nd c2nd 7318  ℝcr 10141  +∞cpnf 10277  ℝ*cxr 10279   < clt 10280  [,)cico 12382 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-pre-lttri 10216  ax-pre-lttrn 10217 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-po 5171  df-so 5172  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-1st 7319  df-2nd 7320  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-ico 12386 This theorem is referenced by:  sxbrsigalem3  30674  sxbrsigalem2  30688
 Copyright terms: Public domain W3C validator