![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > swrdval2 | Structured version Visualization version GIF version |
Description: Value of the subword extractor in its intended domain. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 2-May-2020.) |
Ref | Expression |
---|---|
swrdval2 | ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr 〈𝐹, 𝐿〉) = (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1130 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 𝑆 ∈ Word 𝐴) | |
2 | elfzelz 12549 | . . . 4 ⊢ (𝐹 ∈ (0...𝐿) → 𝐹 ∈ ℤ) | |
3 | 2 | 3ad2ant2 1128 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 𝐹 ∈ ℤ) |
4 | elfzelz 12549 | . . . 4 ⊢ (𝐿 ∈ (0...(♯‘𝑆)) → 𝐿 ∈ ℤ) | |
5 | 4 | 3ad2ant3 1129 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 𝐿 ∈ ℤ) |
6 | swrdval 13625 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr 〈𝐹, 𝐿〉) = if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅)) | |
7 | 1, 3, 5, 6 | syl3anc 1476 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr 〈𝐹, 𝐿〉) = if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅)) |
8 | elfzuz 12545 | . . . . . . 7 ⊢ (𝐹 ∈ (0...𝐿) → 𝐹 ∈ (ℤ≥‘0)) | |
9 | 8 | 3ad2ant2 1128 | . . . . . 6 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 𝐹 ∈ (ℤ≥‘0)) |
10 | fzoss1 12703 | . . . . . 6 ⊢ (𝐹 ∈ (ℤ≥‘0) → (𝐹..^𝐿) ⊆ (0..^𝐿)) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝐹..^𝐿) ⊆ (0..^𝐿)) |
12 | elfzuz3 12546 | . . . . . . 7 ⊢ (𝐿 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ (ℤ≥‘𝐿)) | |
13 | 12 | 3ad2ant3 1129 | . . . . . 6 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (♯‘𝑆) ∈ (ℤ≥‘𝐿)) |
14 | fzoss2 12704 | . . . . . 6 ⊢ ((♯‘𝑆) ∈ (ℤ≥‘𝐿) → (0..^𝐿) ⊆ (0..^(♯‘𝑆))) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (0..^𝐿) ⊆ (0..^(♯‘𝑆))) |
16 | 11, 15 | sstrd 3762 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝐹..^𝐿) ⊆ (0..^(♯‘𝑆))) |
17 | wrddm 13508 | . . . . 5 ⊢ (𝑆 ∈ Word 𝐴 → dom 𝑆 = (0..^(♯‘𝑆))) | |
18 | 17 | 3ad2ant1 1127 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → dom 𝑆 = (0..^(♯‘𝑆))) |
19 | 16, 18 | sseqtr4d 3791 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝐹..^𝐿) ⊆ dom 𝑆) |
20 | 19 | iftrued 4234 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅) = (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹)))) |
21 | 7, 20 | eqtrd 2805 | 1 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr 〈𝐹, 𝐿〉) = (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ⊆ wss 3723 ∅c0 4063 ifcif 4226 〈cop 4323 ↦ cmpt 4864 dom cdm 5250 ‘cfv 6030 (class class class)co 6796 0cc0 10142 + caddc 10145 − cmin 10472 ℤcz 11584 ℤ≥cuz 11893 ...cfz 12533 ..^cfzo 12673 ♯chash 13321 Word cword 13487 substr csubstr 13491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-card 8969 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-n0 11500 df-z 11585 df-uz 11894 df-fz 12534 df-fzo 12674 df-hash 13322 df-word 13495 df-substr 13499 |
This theorem is referenced by: swrd0val 13629 swrdlen 13631 swrdfv 13632 swrdswrd 13669 pfxmpt 41912 |
Copyright terms: Public domain | W3C validator |