MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdswrdlem Structured version   Visualization version   GIF version

Theorem swrdswrdlem 13659
Description: Lemma for swrdswrd 13660. (Contributed by Alexander van der Vekens, 4-Apr-2018.)
Assertion
Ref Expression
swrdswrdlem (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ∧ (𝑀 + 𝐿) ∈ (0...(♯‘𝑊))))

Proof of Theorem swrdswrdlem
StepHypRef Expression
1 simpl1 1228 . 2 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → 𝑊 ∈ Word 𝑉)
2 elfz2 12526 . . . . . 6 (𝐿 ∈ (𝐾...(𝑁𝑀)) ↔ ((𝐾 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿 ≤ (𝑁𝑀))))
3 elfz2nn0 12624 . . . . . . . . . . . 12 (𝐾 ∈ (0...(𝑁𝑀)) ↔ (𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0𝐾 ≤ (𝑁𝑀)))
4 elfz2nn0 12624 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
5 nn0addcl 11520 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀 + 𝐾) ∈ ℕ0)
65adantrr 755 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) → (𝑀 + 𝐾) ∈ ℕ0)
76adantr 472 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) ∧ 𝐾𝐿) → (𝑀 + 𝐾) ∈ ℕ0)
8 elnn0z 11582 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾))
9 0red 10233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 0 ∈ ℝ)
10 zre 11573 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
1110adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐾 ∈ ℝ)
12 zre 11573 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
1312adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐿 ∈ ℝ)
14 letr 10323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((0 ≤ 𝐾𝐾𝐿) → 0 ≤ 𝐿))
159, 11, 13, 14syl3anc 1477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ 𝐾𝐾𝐿) → 0 ≤ 𝐿))
16 elnn0z 11582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐿 ∈ ℕ0 ↔ (𝐿 ∈ ℤ ∧ 0 ≤ 𝐿))
17 nn0addcl 11520 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑀 + 𝐿) ∈ ℕ0)
1817expcom 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐿 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝑀 + 𝐿) ∈ ℕ0))
1916, 18sylbir 225 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐿 ∈ ℤ ∧ 0 ≤ 𝐿) → (𝑀 ∈ ℕ0 → (𝑀 + 𝐿) ∈ ℕ0))
2019ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐿 ∈ ℤ → (0 ≤ 𝐿 → (𝑀 ∈ ℕ0 → (𝑀 + 𝐿) ∈ ℕ0)))
2120adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝐿 → (𝑀 ∈ ℕ0 → (𝑀 + 𝐿) ∈ ℕ0)))
2215, 21syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ 𝐾𝐾𝐿) → (𝑀 ∈ ℕ0 → (𝑀 + 𝐿) ∈ ℕ0)))
2322expd 451 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝐾 → (𝐾𝐿 → (𝑀 ∈ ℕ0 → (𝑀 + 𝐿) ∈ ℕ0))))
2423com34 91 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝐾 → (𝑀 ∈ ℕ0 → (𝐾𝐿 → (𝑀 + 𝐿) ∈ ℕ0))))
2524impancom 455 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) → (𝐿 ∈ ℤ → (𝑀 ∈ ℕ0 → (𝐾𝐿 → (𝑀 + 𝐿) ∈ ℕ0))))
268, 25sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐾 ∈ ℕ0 → (𝐿 ∈ ℤ → (𝑀 ∈ ℕ0 → (𝐾𝐿 → (𝑀 + 𝐿) ∈ ℕ0))))
2726imp 444 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → (𝑀 ∈ ℕ0 → (𝐾𝐿 → (𝑀 + 𝐿) ∈ ℕ0)))
2827impcom 445 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) → (𝐾𝐿 → (𝑀 + 𝐿) ∈ ℕ0))
2928imp 444 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) ∧ 𝐾𝐿) → (𝑀 + 𝐿) ∈ ℕ0)
30 nn0re 11493 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
3130adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → 𝐾 ∈ ℝ)
3231adantl 473 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) → 𝐾 ∈ ℝ)
3312adantl 473 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → 𝐿 ∈ ℝ)
3433adantl 473 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) → 𝐿 ∈ ℝ)
35 nn0re 11493 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
3635adantr 472 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) → 𝑀 ∈ ℝ)
3732, 34, 36leadd2d 10814 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) → (𝐾𝐿 ↔ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿)))
3837biimpa 502 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) ∧ 𝐾𝐿) → (𝑀 + 𝐾) ≤ (𝑀 + 𝐿))
397, 29, 383jca 1123 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) ∧ 𝐾𝐿) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿)))
4039exp31 631 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ0 → ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → (𝐾𝐿 → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿)))))
4140com23 86 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ0 → (𝐾𝐿 → ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿)))))
42413ad2ant1 1128 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐾𝐿 → ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿)))))
434, 42sylbi 207 . . . . . . . . . . . . . . . 16 (𝑀 ∈ (0...𝑁) → (𝐾𝐿 → ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿)))))
44433ad2ant3 1130 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝐾𝐿 → ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿)))))
4544com13 88 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → (𝐾𝐿 → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿)))))
4645ex 449 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 → (𝐿 ∈ ℤ → (𝐾𝐿 → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿))))))
47463ad2ant1 1128 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0𝐾 ≤ (𝑁𝑀)) → (𝐿 ∈ ℤ → (𝐾𝐿 → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿))))))
483, 47sylbi 207 . . . . . . . . . . 11 (𝐾 ∈ (0...(𝑁𝑀)) → (𝐿 ∈ ℤ → (𝐾𝐿 → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿))))))
4948com13 88 . . . . . . . . . 10 (𝐾𝐿 → (𝐿 ∈ ℤ → (𝐾 ∈ (0...(𝑁𝑀)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿))))))
5049adantr 472 . . . . . . . . 9 ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → (𝐿 ∈ ℤ → (𝐾 ∈ (0...(𝑁𝑀)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿))))))
5150com12 32 . . . . . . . 8 (𝐿 ∈ ℤ → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → (𝐾 ∈ (0...(𝑁𝑀)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿))))))
52513ad2ant3 1130 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → (𝐾 ∈ (0...(𝑁𝑀)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿))))))
5352imp 444 . . . . . 6 (((𝐾 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿 ≤ (𝑁𝑀))) → (𝐾 ∈ (0...(𝑁𝑀)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿)))))
542, 53sylbi 207 . . . . 5 (𝐿 ∈ (𝐾...(𝑁𝑀)) → (𝐾 ∈ (0...(𝑁𝑀)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿)))))
5554impcom 445 . . . 4 ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿))))
5655impcom 445 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿)))
57 elfz2nn0 12624 . . 3 ((𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ↔ ((𝑀 + 𝐾) ∈ ℕ0 ∧ (𝑀 + 𝐿) ∈ ℕ0 ∧ (𝑀 + 𝐾) ≤ (𝑀 + 𝐿)))
5856, 57sylibr 224 . 2 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)))
59 elfz2nn0 12624 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (0...(♯‘𝑊)) ↔ (𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑁 ≤ (♯‘𝑊)))
6028com12 32 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐾𝐿 → ((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) → (𝑀 + 𝐿) ∈ ℕ0))
6160adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) → (𝑀 + 𝐿) ∈ ℕ0))
6261impcom 445 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝐾𝐿𝐿 ≤ (𝑁𝑀))) → (𝑀 + 𝐿) ∈ ℕ0)
6362adantr 472 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝐾𝐿𝐿 ≤ (𝑁𝑀))) ∧ (𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑁 ≤ (♯‘𝑊))) → (𝑀 + 𝐿) ∈ ℕ0)
64 simpr2 1236 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝐾𝐿𝐿 ≤ (𝑁𝑀))) ∧ (𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑁 ≤ (♯‘𝑊))) → (♯‘𝑊) ∈ ℕ0)
65 nn0re 11493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
6665, 35anim12i 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
67 nn0re 11493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℝ)
6866, 67anim12i 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ (♯‘𝑊) ∈ ℕ0) → ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (♯‘𝑊) ∈ ℝ))
69 simpllr 817 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (♯‘𝑊) ∈ ℝ) ∧ 𝐿 ∈ ℝ) → 𝑀 ∈ ℝ)
70 simpr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (♯‘𝑊) ∈ ℝ) ∧ 𝐿 ∈ ℝ) → 𝐿 ∈ ℝ)
71 simplll 815 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (♯‘𝑊) ∈ ℝ) ∧ 𝐿 ∈ ℝ) → 𝑁 ∈ ℝ)
7269, 70, 71leaddsub2d 10821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (♯‘𝑊) ∈ ℝ) ∧ 𝐿 ∈ ℝ) → ((𝑀 + 𝐿) ≤ 𝑁𝐿 ≤ (𝑁𝑀)))
73 readdcl 10211 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑀 + 𝐿) ∈ ℝ)
7473ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 (𝑀 ∈ ℝ → (𝐿 ∈ ℝ → (𝑀 + 𝐿) ∈ ℝ))
7574adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿 ∈ ℝ → (𝑀 + 𝐿) ∈ ℝ))
7675adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (♯‘𝑊) ∈ ℝ) → (𝐿 ∈ ℝ → (𝑀 + 𝐿) ∈ ℝ))
7776imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (♯‘𝑊) ∈ ℝ) ∧ 𝐿 ∈ ℝ) → (𝑀 + 𝐿) ∈ ℝ)
78 simpr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (♯‘𝑊) ∈ ℝ) → (♯‘𝑊) ∈ ℝ)
7978adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (♯‘𝑊) ∈ ℝ) ∧ 𝐿 ∈ ℝ) → (♯‘𝑊) ∈ ℝ)
80 letr 10323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (((𝑀 + 𝐿) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → (((𝑀 + 𝐿) ≤ 𝑁𝑁 ≤ (♯‘𝑊)) → (𝑀 + 𝐿) ≤ (♯‘𝑊)))
8180expd 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (((𝑀 + 𝐿) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → ((𝑀 + 𝐿) ≤ 𝑁 → (𝑁 ≤ (♯‘𝑊) → (𝑀 + 𝐿) ≤ (♯‘𝑊))))
8277, 71, 79, 81syl3anc 1477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (♯‘𝑊) ∈ ℝ) ∧ 𝐿 ∈ ℝ) → ((𝑀 + 𝐿) ≤ 𝑁 → (𝑁 ≤ (♯‘𝑊) → (𝑀 + 𝐿) ≤ (♯‘𝑊))))
8382imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (((((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (♯‘𝑊) ∈ ℝ) ∧ 𝐿 ∈ ℝ) ∧ (𝑀 + 𝐿) ≤ 𝑁) → (𝑁 ≤ (♯‘𝑊) → (𝑀 + 𝐿) ≤ (♯‘𝑊)))
8483a1dd 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (((((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (♯‘𝑊) ∈ ℝ) ∧ 𝐿 ∈ ℝ) ∧ (𝑀 + 𝐿) ≤ 𝑁) → (𝑁 ≤ (♯‘𝑊) → (0 ≤ 𝐿 → (𝑀 + 𝐿) ≤ (♯‘𝑊))))
8584ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (♯‘𝑊) ∈ ℝ) ∧ 𝐿 ∈ ℝ) → ((𝑀 + 𝐿) ≤ 𝑁 → (𝑁 ≤ (♯‘𝑊) → (0 ≤ 𝐿 → (𝑀 + 𝐿) ≤ (♯‘𝑊)))))
8672, 85sylbird 250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (♯‘𝑊) ∈ ℝ) ∧ 𝐿 ∈ ℝ) → (𝐿 ≤ (𝑁𝑀) → (𝑁 ≤ (♯‘𝑊) → (0 ≤ 𝐿 → (𝑀 + 𝐿) ≤ (♯‘𝑊)))))
8786com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (♯‘𝑊) ∈ ℝ) ∧ 𝐿 ∈ ℝ) → (𝑁 ≤ (♯‘𝑊) → (𝐿 ≤ (𝑁𝑀) → (0 ≤ 𝐿 → (𝑀 + 𝐿) ≤ (♯‘𝑊)))))
8868, 12, 87syl2an 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ (♯‘𝑊) ∈ ℕ0) ∧ 𝐿 ∈ ℤ) → (𝑁 ≤ (♯‘𝑊) → (𝐿 ≤ (𝑁𝑀) → (0 ≤ 𝐿 → (𝑀 + 𝐿) ≤ (♯‘𝑊)))))
8988ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ (♯‘𝑊) ∈ ℕ0) → (𝐿 ∈ ℤ → (𝑁 ≤ (♯‘𝑊) → (𝐿 ≤ (𝑁𝑀) → (0 ≤ 𝐿 → (𝑀 + 𝐿) ≤ (♯‘𝑊))))))
9089com25 99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ (♯‘𝑊) ∈ ℕ0) → (0 ≤ 𝐿 → (𝑁 ≤ (♯‘𝑊) → (𝐿 ≤ (𝑁𝑀) → (𝐿 ∈ ℤ → (𝑀 + 𝐿) ≤ (♯‘𝑊))))))
9190ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((♯‘𝑊) ∈ ℕ0 → (0 ≤ 𝐿 → (𝑁 ≤ (♯‘𝑊) → (𝐿 ≤ (𝑁𝑀) → (𝐿 ∈ ℤ → (𝑀 + 𝐿) ≤ (♯‘𝑊)))))))
9291com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑁 ≤ (♯‘𝑊) → (0 ≤ 𝐿 → ((♯‘𝑊) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝐿 ∈ ℤ → (𝑀 + 𝐿) ≤ (♯‘𝑊)))))))
9392ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑁 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝑁 ≤ (♯‘𝑊) → (0 ≤ 𝐿 → ((♯‘𝑊) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝐿 ∈ ℤ → (𝑀 + 𝐿) ≤ (♯‘𝑊))))))))
9493com25 99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑁 ∈ ℕ0 → ((♯‘𝑊) ∈ ℕ0 → (𝑁 ≤ (♯‘𝑊) → (0 ≤ 𝐿 → (𝑀 ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝐿 ∈ ℤ → (𝑀 + 𝐿) ≤ (♯‘𝑊))))))))
95943imp 1102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑁 ≤ (♯‘𝑊)) → (0 ≤ 𝐿 → (𝑀 ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝐿 ∈ ℤ → (𝑀 + 𝐿) ≤ (♯‘𝑊))))))
9695com15 101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝐿 ∈ ℤ → (0 ≤ 𝐿 → (𝑀 ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑁 ≤ (♯‘𝑊)) → (𝑀 + 𝐿) ≤ (♯‘𝑊))))))
9796adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝐿 → (𝑀 ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑁 ≤ (♯‘𝑊)) → (𝑀 + 𝐿) ≤ (♯‘𝑊))))))
9815, 97syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ 𝐾𝐾𝐿) → (𝑀 ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑁 ≤ (♯‘𝑊)) → (𝑀 + 𝐿) ≤ (♯‘𝑊))))))
9998expd 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝐾 → (𝐾𝐿 → (𝑀 ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑁 ≤ (♯‘𝑊)) → (𝑀 + 𝐿) ≤ (♯‘𝑊)))))))
10099com35 98 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝐾 → (𝐿 ≤ (𝑁𝑀) → (𝑀 ∈ ℕ0 → (𝐾𝐿 → ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑁 ≤ (♯‘𝑊)) → (𝑀 + 𝐿) ≤ (♯‘𝑊)))))))
101100com25 99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐾𝐿 → (𝐿 ≤ (𝑁𝑀) → (𝑀 ∈ ℕ0 → (0 ≤ 𝐾 → ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑁 ≤ (♯‘𝑊)) → (𝑀 + 𝐿) ≤ (♯‘𝑊)))))))
102101impd 446 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → (𝑀 ∈ ℕ0 → (0 ≤ 𝐾 → ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑁 ≤ (♯‘𝑊)) → (𝑀 + 𝐿) ≤ (♯‘𝑊))))))
103102com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝐾 → (𝑀 ∈ ℕ0 → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑁 ≤ (♯‘𝑊)) → (𝑀 + 𝐿) ≤ (♯‘𝑊))))))
104103impancom 455 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) → (𝐿 ∈ ℤ → (𝑀 ∈ ℕ0 → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑁 ≤ (♯‘𝑊)) → (𝑀 + 𝐿) ≤ (♯‘𝑊))))))
1058, 104sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐾 ∈ ℕ0 → (𝐿 ∈ ℤ → (𝑀 ∈ ℕ0 → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑁 ≤ (♯‘𝑊)) → (𝑀 + 𝐿) ≤ (♯‘𝑊))))))
106105imp 444 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → (𝑀 ∈ ℕ0 → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑁 ≤ (♯‘𝑊)) → (𝑀 + 𝐿) ≤ (♯‘𝑊)))))
107106impcom 445 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑁 ≤ (♯‘𝑊)) → (𝑀 + 𝐿) ≤ (♯‘𝑊))))
108107imp 444 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝐾𝐿𝐿 ≤ (𝑁𝑀))) → ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑁 ≤ (♯‘𝑊)) → (𝑀 + 𝐿) ≤ (♯‘𝑊)))
109108imp 444 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝐾𝐿𝐿 ≤ (𝑁𝑀))) ∧ (𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑁 ≤ (♯‘𝑊))) → (𝑀 + 𝐿) ≤ (♯‘𝑊))
11063, 64, 1093jca 1123 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝐾𝐿𝐿 ≤ (𝑁𝑀))) ∧ (𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑁 ≤ (♯‘𝑊))) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (♯‘𝑊)))
111110exp41 639 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ0 → ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑁 ≤ (♯‘𝑊)) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (♯‘𝑊))))))
112111com24 95 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ0 → ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑁 ≤ (♯‘𝑊)) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (♯‘𝑊))))))
1131123ad2ant1 1128 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑁 ≤ (♯‘𝑊)) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (♯‘𝑊))))))
1144, 113sylbi 207 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (0...𝑁) → ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑁 ≤ (♯‘𝑊)) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (♯‘𝑊))))))
115114com12 32 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑁 ≤ (♯‘𝑊)) → (𝑀 ∈ (0...𝑁) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (♯‘𝑊))))))
11659, 115sylbi 207 . . . . . . . . . . . . . . 15 (𝑁 ∈ (0...(♯‘𝑊)) → (𝑀 ∈ (0...𝑁) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (♯‘𝑊))))))
117116imp 444 . . . . . . . . . . . . . 14 ((𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (♯‘𝑊)))))
1181173adant1 1125 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (♯‘𝑊)))))
119118com13 88 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝐿 ∈ ℤ) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (♯‘𝑊)))))
120119ex 449 . . . . . . . . . . 11 (𝐾 ∈ ℕ0 → (𝐿 ∈ ℤ → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (♯‘𝑊))))))
1211203ad2ant1 1128 . . . . . . . . . 10 ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0𝐾 ≤ (𝑁𝑀)) → (𝐿 ∈ ℤ → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (♯‘𝑊))))))
1223, 121sylbi 207 . . . . . . . . 9 (𝐾 ∈ (0...(𝑁𝑀)) → (𝐿 ∈ ℤ → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (♯‘𝑊))))))
123122com3l 89 . . . . . . . 8 (𝐿 ∈ ℤ → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → (𝐾 ∈ (0...(𝑁𝑀)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (♯‘𝑊))))))
1241233ad2ant3 1130 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → (𝐾 ∈ (0...(𝑁𝑀)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (♯‘𝑊))))))
125124imp 444 . . . . . 6 (((𝐾 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿 ≤ (𝑁𝑀))) → (𝐾 ∈ (0...(𝑁𝑀)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (♯‘𝑊)))))
1262, 125sylbi 207 . . . . 5 (𝐿 ∈ (𝐾...(𝑁𝑀)) → (𝐾 ∈ (0...(𝑁𝑀)) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (♯‘𝑊)))))
127126impcom 445 . . . 4 ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (♯‘𝑊))))
128127impcom 445 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → ((𝑀 + 𝐿) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (♯‘𝑊)))
129 elfz2nn0 12624 . . 3 ((𝑀 + 𝐿) ∈ (0...(♯‘𝑊)) ↔ ((𝑀 + 𝐿) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ (𝑀 + 𝐿) ≤ (♯‘𝑊)))
130128, 129sylibr 224 . 2 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑀 + 𝐿) ∈ (0...(♯‘𝑊)))
1311, 58, 1303jca 1123 1 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ∧ (𝑀 + 𝐿) ∈ (0...(♯‘𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072  wcel 2139   class class class wbr 4804  cfv 6049  (class class class)co 6813  cr 10127  0cc0 10128   + caddc 10131  cle 10267  cmin 10458  0cn0 11484  cz 11569  ...cfz 12519  chash 13311  Word cword 13477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520
This theorem is referenced by:  swrdswrd  13660
  Copyright terms: Public domain W3C validator