MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrds2m Structured version   Visualization version   GIF version

Theorem swrds2m 13894
Description: Extract two adjacent symbols from a word in reverse direction. (Contributed by AV, 11-May-2022.)
Assertion
Ref Expression
swrds2m ((𝑊 ∈ Word 𝑉𝑁 ∈ (2...(♯‘𝑊))) → (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) = ⟨“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”⟩)

Proof of Theorem swrds2m
StepHypRef Expression
1 elfzelz 12548 . . . . . . . 8 (𝑁 ∈ (2...(♯‘𝑊)) → 𝑁 ∈ ℤ)
21zcnd 11684 . . . . . . 7 (𝑁 ∈ (2...(♯‘𝑊)) → 𝑁 ∈ ℂ)
3 2cnd 11294 . . . . . . 7 (𝑁 ∈ (2...(♯‘𝑊)) → 2 ∈ ℂ)
42, 3npcand 10597 . . . . . 6 (𝑁 ∈ (2...(♯‘𝑊)) → ((𝑁 − 2) + 2) = 𝑁)
54eqcomd 2776 . . . . 5 (𝑁 ∈ (2...(♯‘𝑊)) → 𝑁 = ((𝑁 − 2) + 2))
65opeq2d 4544 . . . 4 (𝑁 ∈ (2...(♯‘𝑊)) → ⟨(𝑁 − 2), 𝑁⟩ = ⟨(𝑁 − 2), ((𝑁 − 2) + 2)⟩)
76oveq2d 6808 . . 3 (𝑁 ∈ (2...(♯‘𝑊)) → (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) = (𝑊 substr ⟨(𝑁 − 2), ((𝑁 − 2) + 2)⟩))
87adantl 467 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (2...(♯‘𝑊))) → (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) = (𝑊 substr ⟨(𝑁 − 2), ((𝑁 − 2) + 2)⟩))
9 simpl 468 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (2...(♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
10 elfzuz 12544 . . . . 5 (𝑁 ∈ (2...(♯‘𝑊)) → 𝑁 ∈ (ℤ‘2))
11 uznn0sub 11920 . . . . 5 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ ℕ0)
1210, 11syl 17 . . . 4 (𝑁 ∈ (2...(♯‘𝑊)) → (𝑁 − 2) ∈ ℕ0)
1312adantl 467 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (2...(♯‘𝑊))) → (𝑁 − 2) ∈ ℕ0)
14 2m1e1 11336 . . . . . . 7 (2 − 1) = 1
1514oveq2i 6803 . . . . . 6 (𝑁 − (2 − 1)) = (𝑁 − 1)
16 1cnd 10257 . . . . . . 7 (𝑁 ∈ (2...(♯‘𝑊)) → 1 ∈ ℂ)
172, 3, 16subsubd 10621 . . . . . 6 (𝑁 ∈ (2...(♯‘𝑊)) → (𝑁 − (2 − 1)) = ((𝑁 − 2) + 1))
1815, 17syl5reqr 2819 . . . . 5 (𝑁 ∈ (2...(♯‘𝑊)) → ((𝑁 − 2) + 1) = (𝑁 − 1))
19 2eluzge1 11935 . . . . . . . 8 2 ∈ (ℤ‘1)
20 fzss1 12586 . . . . . . . 8 (2 ∈ (ℤ‘1) → (2...(♯‘𝑊)) ⊆ (1...(♯‘𝑊)))
2119, 20ax-mp 5 . . . . . . 7 (2...(♯‘𝑊)) ⊆ (1...(♯‘𝑊))
2221sseli 3746 . . . . . 6 (𝑁 ∈ (2...(♯‘𝑊)) → 𝑁 ∈ (1...(♯‘𝑊)))
23 fz1fzo0m1 12723 . . . . . 6 (𝑁 ∈ (1...(♯‘𝑊)) → (𝑁 − 1) ∈ (0..^(♯‘𝑊)))
2422, 23syl 17 . . . . 5 (𝑁 ∈ (2...(♯‘𝑊)) → (𝑁 − 1) ∈ (0..^(♯‘𝑊)))
2518, 24eqeltrd 2849 . . . 4 (𝑁 ∈ (2...(♯‘𝑊)) → ((𝑁 − 2) + 1) ∈ (0..^(♯‘𝑊)))
2625adantl 467 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (2...(♯‘𝑊))) → ((𝑁 − 2) + 1) ∈ (0..^(♯‘𝑊)))
27 swrds2 13893 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 − 2) ∈ ℕ0 ∧ ((𝑁 − 2) + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨(𝑁 − 2), ((𝑁 − 2) + 2)⟩) = ⟨“(𝑊‘(𝑁 − 2))(𝑊‘((𝑁 − 2) + 1))”⟩)
289, 13, 26, 27syl3anc 1475 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (2...(♯‘𝑊))) → (𝑊 substr ⟨(𝑁 − 2), ((𝑁 − 2) + 2)⟩) = ⟨“(𝑊‘(𝑁 − 2))(𝑊‘((𝑁 − 2) + 1))”⟩)
29 eqidd 2771 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (2...(♯‘𝑊))) → (𝑊‘(𝑁 − 2)) = (𝑊‘(𝑁 − 2)))
3018fveq2d 6336 . . . 4 (𝑁 ∈ (2...(♯‘𝑊)) → (𝑊‘((𝑁 − 2) + 1)) = (𝑊‘(𝑁 − 1)))
3130adantl 467 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (2...(♯‘𝑊))) → (𝑊‘((𝑁 − 2) + 1)) = (𝑊‘(𝑁 − 1)))
3229, 31s2eqd 13816 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (2...(♯‘𝑊))) → ⟨“(𝑊‘(𝑁 − 2))(𝑊‘((𝑁 − 2) + 1))”⟩ = ⟨“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”⟩)
338, 28, 323eqtrd 2808 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (2...(♯‘𝑊))) → (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) = ⟨“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wcel 2144  wss 3721  cop 4320  cfv 6031  (class class class)co 6792  0cc0 10137  1c1 10138   + caddc 10140  cmin 10467  2c2 11271  0cn0 11493  cuz 11887  ...cfz 12532  ..^cfzo 12672  chash 13320  Word cword 13486   substr csubstr 13490  ⟨“cs2 13794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-n0 11494  df-z 11579  df-uz 11888  df-fz 12533  df-fzo 12673  df-hash 13321  df-word 13494  df-concat 13496  df-s1 13497  df-substr 13498  df-s2 13801
This theorem is referenced by:  2clwwlk2clwwlklem  27528
  Copyright terms: Public domain W3C validator