Step | Hyp | Ref
| Expression |
1 | | 3orcomb 1078 |
. . . 4
⊢ ((𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ (♯‘𝑊) < 𝐿) ↔ (𝐹 < 0 ∨ (♯‘𝑊) < 𝐿 ∨ 𝐿 ≤ 𝐹)) |
2 | | df-3or 1072 |
. . . 4
⊢ ((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿 ∨ 𝐿 ≤ 𝐹) ↔ ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∨ 𝐿 ≤ 𝐹)) |
3 | 1, 2 | bitri 264 |
. . 3
⊢ ((𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ (♯‘𝑊) < 𝐿) ↔ ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∨ 𝐿 ≤ 𝐹)) |
4 | | swrdlend 13640 |
. . . . . 6
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ 𝐹 → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) |
5 | 4 | com12 32 |
. . . . 5
⊢ (𝐿 ≤ 𝐹 → ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) |
6 | | swrdval 13625 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr 〈𝐹, 𝐿〉) = if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅)) |
7 | 6 | adantl 467 |
. . . . . . . 8
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑊 substr 〈𝐹, 𝐿〉) = if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅)) |
8 | | zre 11588 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 ∈ ℤ → 𝐹 ∈
ℝ) |
9 | | 0red 10247 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 ∈ ℤ → 0 ∈
ℝ) |
10 | 8, 9 | ltnled 10390 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ ℤ → (𝐹 < 0 ↔ ¬ 0 ≤
𝐹)) |
11 | 10 | 3ad2ant2 1128 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 0 ↔ ¬ 0 ≤ 𝐹)) |
12 | | lencl 13520 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈
ℕ0) |
13 | 12 | nn0red 11559 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℝ) |
14 | | zre 11588 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐿 ∈ ℤ → 𝐿 ∈
ℝ) |
15 | 13, 14 | anim12i 600 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ) →
((♯‘𝑊) ∈
ℝ ∧ 𝐿 ∈
ℝ)) |
16 | 15 | 3adant2 1125 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) →
((♯‘𝑊) ∈
ℝ ∧ 𝐿 ∈
ℝ)) |
17 | | ltnle 10323 |
. . . . . . . . . . . . . . . . 17
⊢
(((♯‘𝑊)
∈ ℝ ∧ 𝐿
∈ ℝ) → ((♯‘𝑊) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊))) |
18 | 16, 17 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) →
((♯‘𝑊) <
𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊))) |
19 | 11, 18 | orbi12d 904 |
. . . . . . . . . . . . . . 15
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ↔ (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊)))) |
20 | 19 | biimpcd 239 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) → ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊)))) |
21 | 20 | adantr 466 |
. . . . . . . . . . . . 13
⊢ (((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) → ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊)))) |
22 | 21 | imp 393 |
. . . . . . . . . . . 12
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊))) |
23 | | ianor 966 |
. . . . . . . . . . . 12
⊢ (¬ (0
≤ 𝐹 ∧ 𝐿 ≤ (♯‘𝑊)) ↔ (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊))) |
24 | 22, 23 | sylibr 224 |
. . . . . . . . . . 11
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (0 ≤ 𝐹 ∧ 𝐿 ≤ (♯‘𝑊))) |
25 | | 3simpc 1146 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) |
26 | 25 | adantl 467 |
. . . . . . . . . . . 12
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) |
27 | 12 | nn0zd 11687 |
. . . . . . . . . . . . . . 15
⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ) |
28 | | 0z 11595 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℤ |
29 | 27, 28 | jctil 509 |
. . . . . . . . . . . . . 14
⊢ (𝑊 ∈ Word 𝑉 → (0 ∈ ℤ ∧
(♯‘𝑊) ∈
ℤ)) |
30 | 29 | 3ad2ant1 1127 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ∈ ℤ
∧ (♯‘𝑊)
∈ ℤ)) |
31 | 30 | adantl 467 |
. . . . . . . . . . . 12
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (0 ∈ ℤ
∧ (♯‘𝑊)
∈ ℤ)) |
32 | | ltnle 10323 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝐹 < 𝐿 ↔ ¬ 𝐿 ≤ 𝐹)) |
33 | 8, 14, 32 | syl2an 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 𝐿 ↔ ¬ 𝐿 ≤ 𝐹)) |
34 | 33 | 3adant1 1124 |
. . . . . . . . . . . . . . 15
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 𝐿 ↔ ¬ 𝐿 ≤ 𝐹)) |
35 | 34 | biimprcd 240 |
. . . . . . . . . . . . . 14
⊢ (¬
𝐿 ≤ 𝐹 → ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐹 < 𝐿)) |
36 | 35 | adantl 467 |
. . . . . . . . . . . . 13
⊢ (((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) → ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐹 < 𝐿)) |
37 | 36 | imp 393 |
. . . . . . . . . . . 12
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝐹 < 𝐿) |
38 | | ssfzo12bi 12771 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (0 ∈
ℤ ∧ (♯‘𝑊) ∈ ℤ) ∧ 𝐹 < 𝐿) → ((𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)) ↔ (0 ≤ 𝐹 ∧ 𝐿 ≤ (♯‘𝑊)))) |
39 | 26, 31, 37, 38 | syl3anc 1476 |
. . . . . . . . . . 11
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)) ↔ (0 ≤ 𝐹 ∧ 𝐿 ≤ (♯‘𝑊)))) |
40 | 24, 39 | mtbird 314 |
. . . . . . . . . 10
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊))) |
41 | | wrddm 13508 |
. . . . . . . . . . . . . 14
⊢ (𝑊 ∈ Word 𝑉 → dom 𝑊 = (0..^(♯‘𝑊))) |
42 | 41 | sseq2d 3782 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ Word 𝑉 → ((𝐹..^𝐿) ⊆ dom 𝑊 ↔ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)))) |
43 | 42 | notbid 307 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ Word 𝑉 → (¬ (𝐹..^𝐿) ⊆ dom 𝑊 ↔ ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)))) |
44 | 43 | 3ad2ant1 1127 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ (𝐹..^𝐿) ⊆ dom 𝑊 ↔ ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)))) |
45 | 44 | adantl 467 |
. . . . . . . . . 10
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (¬ (𝐹..^𝐿) ⊆ dom 𝑊 ↔ ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)))) |
46 | 40, 45 | mpbird 247 |
. . . . . . . . 9
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) ⊆ dom 𝑊) |
47 | 46 | iffalsed 4237 |
. . . . . . . 8
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅) = ∅) |
48 | 7, 47 | eqtrd 2805 |
. . . . . . 7
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑊 substr 〈𝐹, 𝐿〉) = ∅) |
49 | 48 | exp31 406 |
. . . . . 6
⊢ ((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) → (¬ 𝐿 ≤ 𝐹 → ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr 〈𝐹, 𝐿〉) = ∅))) |
50 | 49 | impcom 394 |
. . . . 5
⊢ ((¬
𝐿 ≤ 𝐹 ∧ (𝐹 < 0 ∨ (♯‘𝑊) < 𝐿)) → ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) |
51 | 5, 50 | jaoi3 1047 |
. . . 4
⊢ ((𝐿 ≤ 𝐹 ∨ (𝐹 < 0 ∨ (♯‘𝑊) < 𝐿)) → ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) |
52 | 51 | orcoms 861 |
. . 3
⊢ (((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∨ 𝐿 ≤ 𝐹) → ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) |
53 | 3, 52 | sylbi 207 |
. 2
⊢ ((𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ (♯‘𝑊) < 𝐿) → ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) |
54 | 53 | com12 32 |
1
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ (♯‘𝑊) < 𝐿) → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) |