MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdlen Structured version   Visualization version   GIF version

Theorem swrdlen 13631
Description: Length of an extracted subword. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Assertion
Ref Expression
swrdlen ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝐹, 𝐿⟩)) = (𝐿𝐹))

Proof of Theorem swrdlen
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvex 6342 . . . . 5 (𝑆‘(𝑥 + 𝐹)) ∈ V
2 eqid 2771 . . . . 5 (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) = (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹)))
31, 2fnmpti 6162 . . . 4 (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) Fn (0..^(𝐿𝐹))
4 swrdval2 13628 . . . . 5 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨𝐹, 𝐿⟩) = (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))))
54fneq1d 6121 . . . 4 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → ((𝑆 substr ⟨𝐹, 𝐿⟩) Fn (0..^(𝐿𝐹)) ↔ (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) Fn (0..^(𝐿𝐹))))
63, 5mpbiri 248 . . 3 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨𝐹, 𝐿⟩) Fn (0..^(𝐿𝐹)))
7 hashfn 13366 . . 3 ((𝑆 substr ⟨𝐹, 𝐿⟩) Fn (0..^(𝐿𝐹)) → (♯‘(𝑆 substr ⟨𝐹, 𝐿⟩)) = (♯‘(0..^(𝐿𝐹))))
86, 7syl 17 . 2 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝐹, 𝐿⟩)) = (♯‘(0..^(𝐿𝐹))))
9 fznn0sub 12580 . . . 4 (𝐹 ∈ (0...𝐿) → (𝐿𝐹) ∈ ℕ0)
1093ad2ant2 1128 . . 3 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝐿𝐹) ∈ ℕ0)
11 hashfzo0 13419 . . 3 ((𝐿𝐹) ∈ ℕ0 → (♯‘(0..^(𝐿𝐹))) = (𝐿𝐹))
1210, 11syl 17 . 2 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (♯‘(0..^(𝐿𝐹))) = (𝐿𝐹))
138, 12eqtrd 2805 1 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝐹, 𝐿⟩)) = (𝐿𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1071   = wceq 1631  wcel 2145  cop 4322  cmpt 4863   Fn wfn 6026  cfv 6031  (class class class)co 6793  0cc0 10138   + caddc 10141  cmin 10468  0cn0 11494  ...cfz 12533  ..^cfzo 12673  chash 13321  Word cword 13487   substr csubstr 13491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13495  df-substr 13499
This theorem is referenced by:  swrdf  13634  swrdrlen  13644  swrdlen2  13654  swrds1  13660  ccatswrd  13665  swrdccat2  13667  swrdswrd  13669  swrdccatin12lem2  13698  swrdccatin12  13700  spllen  13714  splfv1  13715  splfv2a  13716  cshwlen  13754  cshwidxmod  13758  efgredleme  18363  ccatpfx  41937  pfxccatin12lem2  41952  pfxccatin12  41953
  Copyright terms: Public domain W3C validator