![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > swrdccatin2d | Structured version Visualization version GIF version |
Description: The subword of a concatenation of two words within the second of the concatenated words. (Contributed by AV, 31-May-2018.) (Revised by Mario Carneiro/AV, 21-Oct-2018.) |
Ref | Expression |
---|---|
swrdccatind.l | ⊢ (𝜑 → (#‘𝐴) = 𝐿) |
swrdccatind.w | ⊢ (𝜑 → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
swrdccatin2d.1 | ⊢ (𝜑 → 𝑀 ∈ (𝐿...𝑁)) |
swrdccatin2d.2 | ⊢ (𝜑 → 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) |
Ref | Expression |
---|---|
swrdccatin2d | ⊢ (𝜑 → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swrdccatind.l | . 2 ⊢ (𝜑 → (#‘𝐴) = 𝐿) | |
2 | swrdccatind.w | . . . . . . 7 ⊢ (𝜑 → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) | |
3 | 2 | adantl 481 | . . . . . 6 ⊢ (((#‘𝐴) = 𝐿 ∧ 𝜑) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
4 | swrdccatin2d.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ (𝐿...𝑁)) | |
5 | swrdccatin2d.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) | |
6 | 4, 5 | jca 553 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) |
7 | 6 | adantl 481 | . . . . . . 7 ⊢ (((#‘𝐴) = 𝐿 ∧ 𝜑) → (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) |
8 | oveq1 6697 | . . . . . . . . . 10 ⊢ ((#‘𝐴) = 𝐿 → ((#‘𝐴)...𝑁) = (𝐿...𝑁)) | |
9 | 8 | eleq2d 2716 | . . . . . . . . 9 ⊢ ((#‘𝐴) = 𝐿 → (𝑀 ∈ ((#‘𝐴)...𝑁) ↔ 𝑀 ∈ (𝐿...𝑁))) |
10 | id 22 | . . . . . . . . . . 11 ⊢ ((#‘𝐴) = 𝐿 → (#‘𝐴) = 𝐿) | |
11 | oveq1 6697 | . . . . . . . . . . 11 ⊢ ((#‘𝐴) = 𝐿 → ((#‘𝐴) + (#‘𝐵)) = (𝐿 + (#‘𝐵))) | |
12 | 10, 11 | oveq12d 6708 | . . . . . . . . . 10 ⊢ ((#‘𝐴) = 𝐿 → ((#‘𝐴)...((#‘𝐴) + (#‘𝐵))) = (𝐿...(𝐿 + (#‘𝐵)))) |
13 | 12 | eleq2d 2716 | . . . . . . . . 9 ⊢ ((#‘𝐴) = 𝐿 → (𝑁 ∈ ((#‘𝐴)...((#‘𝐴) + (#‘𝐵))) ↔ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) |
14 | 9, 13 | anbi12d 747 | . . . . . . . 8 ⊢ ((#‘𝐴) = 𝐿 → ((𝑀 ∈ ((#‘𝐴)...𝑁) ∧ 𝑁 ∈ ((#‘𝐴)...((#‘𝐴) + (#‘𝐵)))) ↔ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))))) |
15 | 14 | adantr 480 | . . . . . . 7 ⊢ (((#‘𝐴) = 𝐿 ∧ 𝜑) → ((𝑀 ∈ ((#‘𝐴)...𝑁) ∧ 𝑁 ∈ ((#‘𝐴)...((#‘𝐴) + (#‘𝐵)))) ↔ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))))) |
16 | 7, 15 | mpbird 247 | . . . . . 6 ⊢ (((#‘𝐴) = 𝐿 ∧ 𝜑) → (𝑀 ∈ ((#‘𝐴)...𝑁) ∧ 𝑁 ∈ ((#‘𝐴)...((#‘𝐴) + (#‘𝐵))))) |
17 | 3, 16 | jca 553 | . . . . 5 ⊢ (((#‘𝐴) = 𝐿 ∧ 𝜑) → ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ ((#‘𝐴)...𝑁) ∧ 𝑁 ∈ ((#‘𝐴)...((#‘𝐴) + (#‘𝐵)))))) |
18 | 17 | ex 449 | . . . 4 ⊢ ((#‘𝐴) = 𝐿 → (𝜑 → ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ ((#‘𝐴)...𝑁) ∧ 𝑁 ∈ ((#‘𝐴)...((#‘𝐴) + (#‘𝐵))))))) |
19 | eqid 2651 | . . . . . 6 ⊢ (#‘𝐴) = (#‘𝐴) | |
20 | 19 | swrdccatin2 13533 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ ((#‘𝐴)...𝑁) ∧ 𝑁 ∈ ((#‘𝐴)...((#‘𝐴) + (#‘𝐵)))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − (#‘𝐴)), (𝑁 − (#‘𝐴))〉))) |
21 | 20 | imp 444 | . . . 4 ⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ ((#‘𝐴)...𝑁) ∧ 𝑁 ∈ ((#‘𝐴)...((#‘𝐴) + (#‘𝐵))))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − (#‘𝐴)), (𝑁 − (#‘𝐴))〉)) |
22 | 18, 21 | syl6 35 | . . 3 ⊢ ((#‘𝐴) = 𝐿 → (𝜑 → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − (#‘𝐴)), (𝑁 − (#‘𝐴))〉))) |
23 | oveq2 6698 | . . . . . 6 ⊢ ((#‘𝐴) = 𝐿 → (𝑀 − (#‘𝐴)) = (𝑀 − 𝐿)) | |
24 | oveq2 6698 | . . . . . 6 ⊢ ((#‘𝐴) = 𝐿 → (𝑁 − (#‘𝐴)) = (𝑁 − 𝐿)) | |
25 | 23, 24 | opeq12d 4441 | . . . . 5 ⊢ ((#‘𝐴) = 𝐿 → 〈(𝑀 − (#‘𝐴)), (𝑁 − (#‘𝐴))〉 = 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉) |
26 | 25 | oveq2d 6706 | . . . 4 ⊢ ((#‘𝐴) = 𝐿 → (𝐵 substr 〈(𝑀 − (#‘𝐴)), (𝑁 − (#‘𝐴))〉) = (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉)) |
27 | 26 | eqeq2d 2661 | . . 3 ⊢ ((#‘𝐴) = 𝐿 → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − (#‘𝐴)), (𝑁 − (#‘𝐴))〉) ↔ ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉))) |
28 | 22, 27 | sylibd 229 | . 2 ⊢ ((#‘𝐴) = 𝐿 → (𝜑 → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉))) |
29 | 1, 28 | mpcom 38 | 1 ⊢ (𝜑 → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 〈cop 4216 ‘cfv 5926 (class class class)co 6690 + caddc 9977 − cmin 10304 ...cfz 12364 #chash 13157 Word cword 13323 ++ cconcat 13325 substr csubstr 13327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-fzo 12505 df-hash 13158 df-word 13331 df-concat 13333 df-substr 13335 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |