MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccatin12lem1 Structured version   Visualization version   GIF version

Theorem swrdccatin12lem1 13693
Description: Lemma 1 for swrdccatin12 13700. (Contributed by Alexander van der Vekens, 30-Mar-2018.) (Revised by Alexander van der Vekens, 23-May-2018.)
Assertion
Ref Expression
swrdccatin12lem1 ((𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ ((𝐿𝑀)..^((𝐿𝑀) + (𝑁𝐿)))))

Proof of Theorem swrdccatin12lem1
StepHypRef Expression
1 nn0z 11607 . . . . . 6 (𝐿 ∈ ℕ0𝐿 ∈ ℤ)
2 nn0z 11607 . . . . . 6 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
3 zsubcl 11626 . . . . . 6 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
41, 2, 3syl2an 583 . . . . 5 ((𝐿 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐿𝑀) ∈ ℤ)
543adant3 1126 . . . 4 ((𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
6 elfzonelfzo 12778 . . . . 5 ((𝐿𝑀) ∈ ℤ → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))))
76imp 393 . . . 4 (((𝐿𝑀) ∈ ℤ ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)))
85, 7sylan 569 . . 3 (((𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)))
9 nn0cn 11509 . . . . . . 7 (𝐿 ∈ ℕ0𝐿 ∈ ℂ)
10 nn0cn 11509 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
11 zcn 11589 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
12 npncan3 10525 . . . . . . 7 ((𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐿𝑀) + (𝑁𝐿)) = (𝑁𝑀))
139, 10, 11, 12syl3an 1163 . . . . . 6 ((𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ) → ((𝐿𝑀) + (𝑁𝐿)) = (𝑁𝑀))
1413oveq2d 6812 . . . . 5 ((𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ) → ((𝐿𝑀)..^((𝐿𝑀) + (𝑁𝐿))) = ((𝐿𝑀)..^(𝑁𝑀)))
1514eleq2d 2836 . . . 4 ((𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ) → (𝐾 ∈ ((𝐿𝑀)..^((𝐿𝑀) + (𝑁𝐿))) ↔ 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))))
1615adantr 466 . . 3 (((𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐾 ∈ ((𝐿𝑀)..^((𝐿𝑀) + (𝑁𝐿))) ↔ 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))))
178, 16mpbird 247 . 2 (((𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐾 ∈ ((𝐿𝑀)..^((𝐿𝑀) + (𝑁𝐿))))
1817ex 397 1 ((𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ ((𝐿𝑀)..^((𝐿𝑀) + (𝑁𝐿)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  (class class class)co 6796  cc 10140  0cc0 10142   + caddc 10145  cmin 10472  0cn0 11499  cz 11584  ..^cfzo 12673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-n0 11500  df-z 11585  df-uz 11894  df-fz 12534  df-fzo 12674
This theorem is referenced by:  swrdccatin12  13700  pfxccatin12  41950
  Copyright terms: Public domain W3C validator