![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > swrdccatin12lem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for swrdccatin12 13700. (Contributed by Alexander van der Vekens, 30-Mar-2018.) (Revised by Alexander van der Vekens, 23-May-2018.) |
Ref | Expression |
---|---|
swrdccatin12lem1 | ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → 𝐾 ∈ ((𝐿 − 𝑀)..^((𝐿 − 𝑀) + (𝑁 − 𝐿))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z 11607 | . . . . . 6 ⊢ (𝐿 ∈ ℕ0 → 𝐿 ∈ ℤ) | |
2 | nn0z 11607 | . . . . . 6 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ) | |
3 | zsubcl 11626 | . . . . . 6 ⊢ ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿 − 𝑀) ∈ ℤ) | |
4 | 1, 2, 3 | syl2an 583 | . . . . 5 ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → (𝐿 − 𝑀) ∈ ℤ) |
5 | 4 | 3adant3 1126 | . . . 4 ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → (𝐿 − 𝑀) ∈ ℤ) |
6 | elfzonelfzo 12778 | . . . . 5 ⊢ ((𝐿 − 𝑀) ∈ ℤ → ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → 𝐾 ∈ ((𝐿 − 𝑀)..^(𝑁 − 𝑀)))) | |
7 | 6 | imp 393 | . . . 4 ⊢ (((𝐿 − 𝑀) ∈ ℤ ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → 𝐾 ∈ ((𝐿 − 𝑀)..^(𝑁 − 𝑀))) |
8 | 5, 7 | sylan 569 | . . 3 ⊢ (((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → 𝐾 ∈ ((𝐿 − 𝑀)..^(𝑁 − 𝑀))) |
9 | nn0cn 11509 | . . . . . . 7 ⊢ (𝐿 ∈ ℕ0 → 𝐿 ∈ ℂ) | |
10 | nn0cn 11509 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℂ) | |
11 | zcn 11589 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
12 | npncan3 10525 | . . . . . . 7 ⊢ ((𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐿 − 𝑀) + (𝑁 − 𝐿)) = (𝑁 − 𝑀)) | |
13 | 9, 10, 11, 12 | syl3an 1163 | . . . . . 6 ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → ((𝐿 − 𝑀) + (𝑁 − 𝐿)) = (𝑁 − 𝑀)) |
14 | 13 | oveq2d 6812 | . . . . 5 ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → ((𝐿 − 𝑀)..^((𝐿 − 𝑀) + (𝑁 − 𝐿))) = ((𝐿 − 𝑀)..^(𝑁 − 𝑀))) |
15 | 14 | eleq2d 2836 | . . . 4 ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ((𝐿 − 𝑀)..^((𝐿 − 𝑀) + (𝑁 − 𝐿))) ↔ 𝐾 ∈ ((𝐿 − 𝑀)..^(𝑁 − 𝑀)))) |
16 | 15 | adantr 466 | . . 3 ⊢ (((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (𝐾 ∈ ((𝐿 − 𝑀)..^((𝐿 − 𝑀) + (𝑁 − 𝐿))) ↔ 𝐾 ∈ ((𝐿 − 𝑀)..^(𝑁 − 𝑀)))) |
17 | 8, 16 | mpbird 247 | . 2 ⊢ (((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → 𝐾 ∈ ((𝐿 − 𝑀)..^((𝐿 − 𝑀) + (𝑁 − 𝐿)))) |
18 | 17 | ex 397 | 1 ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → 𝐾 ∈ ((𝐿 − 𝑀)..^((𝐿 − 𝑀) + (𝑁 − 𝐿))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 (class class class)co 6796 ℂcc 10140 0cc0 10142 + caddc 10145 − cmin 10472 ℕ0cn0 11499 ℤcz 11584 ..^cfzo 12673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-n0 11500 df-z 11585 df-uz 11894 df-fz 12534 df-fzo 12674 |
This theorem is referenced by: swrdccatin12 13700 pfxccatin12 41950 |
Copyright terms: Public domain | W3C validator |