MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccatin12 Structured version   Visualization version   GIF version

Theorem swrdccatin12 13612
Description: The subword of a concatenation of two words within both of the concatenated words. (Contributed by Alexander van der Vekens, 5-Apr-2018.) (Revised by Alexander van der Vekens, 27-May-2018.)
Hypothesis
Ref Expression
swrdccatin12.l 𝐿 = (♯‘𝐴)
Assertion
Ref Expression
swrdccatin12 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))))

Proof of Theorem swrdccatin12
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ccatcl 13467 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
21adantr 472 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
3 elfz0fzfz0 12559 . . . . 5 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → 𝑀 ∈ (0...𝑁))
43adantl 473 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝑀 ∈ (0...𝑁))
5 elfzuz2 12460 . . . . . . . . 9 (𝑀 ∈ (0...𝐿) → 𝐿 ∈ (ℤ‘0))
65adantl 473 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...𝐿)) → 𝐿 ∈ (ℤ‘0))
7 fzss1 12494 . . . . . . . 8 (𝐿 ∈ (ℤ‘0) → (𝐿...(𝐿 + (♯‘𝐵))) ⊆ (0...(𝐿 + (♯‘𝐵))))
86, 7syl 17 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...𝐿)) → (𝐿...(𝐿 + (♯‘𝐵))) ⊆ (0...(𝐿 + (♯‘𝐵))))
9 ccatlen 13468 . . . . . . . . . 10 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
10 swrdccatin12.l . . . . . . . . . . . 12 𝐿 = (♯‘𝐴)
1110eqcomi 2733 . . . . . . . . . . 11 (♯‘𝐴) = 𝐿
1211oveq1i 6775 . . . . . . . . . 10 ((♯‘𝐴) + (♯‘𝐵)) = (𝐿 + (♯‘𝐵))
139, 12syl6eq 2774 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (♯‘(𝐴 ++ 𝐵)) = (𝐿 + (♯‘𝐵)))
1413adantr 472 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...𝐿)) → (♯‘(𝐴 ++ 𝐵)) = (𝐿 + (♯‘𝐵)))
1514oveq2d 6781 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...𝐿)) → (0...(♯‘(𝐴 ++ 𝐵))) = (0...(𝐿 + (♯‘𝐵))))
168, 15sseqtr4d 3748 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...𝐿)) → (𝐿...(𝐿 + (♯‘𝐵))) ⊆ (0...(♯‘(𝐴 ++ 𝐵))))
1716sseld 3708 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...𝐿)) → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))))
1817impr 650 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))))
19 swrdvalfn 13547 . . . 4 (((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
202, 4, 18, 19syl3anc 1439 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
21 swrdcl 13539 . . . . . . 7 (𝐴 ∈ Word 𝑉 → (𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉)
22 swrdcl 13539 . . . . . . 7 (𝐵 ∈ Word 𝑉 → (𝐵 substr ⟨0, (𝑁𝐿)⟩) ∈ Word 𝑉)
2321, 22anim12i 591 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 substr ⟨0, (𝑁𝐿)⟩) ∈ Word 𝑉))
2423adantr 472 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 substr ⟨0, (𝑁𝐿)⟩) ∈ Word 𝑉))
25 ccatvalfn 13474 . . . . 5 (((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 substr ⟨0, (𝑁𝐿)⟩) ∈ Word 𝑉) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)) Fn (0..^((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (♯‘(𝐵 substr ⟨0, (𝑁𝐿)⟩)))))
2624, 25syl 17 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)) Fn (0..^((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (♯‘(𝐵 substr ⟨0, (𝑁𝐿)⟩)))))
27 simpll 807 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝐴 ∈ Word 𝑉)
28 simprl 811 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝑀 ∈ (0...𝐿))
29 lencl 13431 . . . . . . . . . . . 12 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
30 elnn0uz 11839 . . . . . . . . . . . . . 14 ((♯‘𝐴) ∈ ℕ0 ↔ (♯‘𝐴) ∈ (ℤ‘0))
31 eluzfz2 12463 . . . . . . . . . . . . . 14 ((♯‘𝐴) ∈ (ℤ‘0) → (♯‘𝐴) ∈ (0...(♯‘𝐴)))
3230, 31sylbi 207 . . . . . . . . . . . . 13 ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ (0...(♯‘𝐴)))
3310, 32syl5eqel 2807 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ ℕ0𝐿 ∈ (0...(♯‘𝐴)))
3429, 33syl 17 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝐴)))
3534adantr 472 . . . . . . . . . 10 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐿 ∈ (0...(♯‘𝐴)))
3635adantr 472 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝐿 ∈ (0...(♯‘𝐴)))
37 swrdlen 13543 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐴))) → (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) = (𝐿𝑀))
3827, 28, 36, 37syl3anc 1439 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) = (𝐿𝑀))
39 simpr 479 . . . . . . . . . 10 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐵 ∈ Word 𝑉)
4039adantr 472 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝐵 ∈ Word 𝑉)
41 lencl 13431 . . . . . . . . . . . . 13 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℕ0)
4241nn0zd 11593 . . . . . . . . . . . 12 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℤ)
4342adantl 473 . . . . . . . . . . 11 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (♯‘𝐵) ∈ ℤ)
44 simpr 479 . . . . . . . . . . 11 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))
4543, 44anim12i 591 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((♯‘𝐵) ∈ ℤ ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
46 elfzmlbp 12565 . . . . . . . . . 10 (((♯‘𝐵) ∈ ℤ ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝑁𝐿) ∈ (0...(♯‘𝐵)))
4745, 46syl 17 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑁𝐿) ∈ (0...(♯‘𝐵)))
48 swrd0len 13542 . . . . . . . . 9 ((𝐵 ∈ Word 𝑉 ∧ (𝑁𝐿) ∈ (0...(♯‘𝐵))) → (♯‘(𝐵 substr ⟨0, (𝑁𝐿)⟩)) = (𝑁𝐿))
4940, 47, 48syl2anc 696 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (♯‘(𝐵 substr ⟨0, (𝑁𝐿)⟩)) = (𝑁𝐿))
5038, 49oveq12d 6783 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (♯‘(𝐵 substr ⟨0, (𝑁𝐿)⟩))) = ((𝐿𝑀) + (𝑁𝐿)))
51 elfz2nn0 12545 . . . . . . . . . . 11 (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿))
52 nn0cn 11415 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℕ0𝐿 ∈ ℂ)
5352adantl 473 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → 𝐿 ∈ ℂ)
5453adantl 473 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0)) → 𝐿 ∈ ℂ)
55 nn0cn 11415 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
5655ad2antrl 766 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0)) → 𝑀 ∈ ℂ)
57 zcn 11495 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
5857adantr 472 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0)) → 𝑁 ∈ ℂ)
5954, 56, 583jca 1379 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ))
6059ex 449 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
61 elfzelz 12456 . . . . . . . . . . . . 13 (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → 𝑁 ∈ ℤ)
6260, 61syl11 33 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → (𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
63623adant3 1124 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → (𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
6451, 63sylbi 207 . . . . . . . . . 10 (𝑀 ∈ (0...𝐿) → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → (𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
6564imp 444 . . . . . . . . 9 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ))
6665adantl 473 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ))
67 npncan3 10432 . . . . . . . 8 ((𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐿𝑀) + (𝑁𝐿)) = (𝑁𝑀))
6866, 67syl 17 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐿𝑀) + (𝑁𝐿)) = (𝑁𝑀))
6950, 68eqtr2d 2759 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑁𝑀) = ((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (♯‘(𝐵 substr ⟨0, (𝑁𝐿)⟩))))
7069oveq2d 6781 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (0..^(𝑁𝑀)) = (0..^((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (♯‘(𝐵 substr ⟨0, (𝑁𝐿)⟩)))))
7170fneq2d 6095 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)) Fn (0..^(𝑁𝑀)) ↔ ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)) Fn (0..^((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (♯‘(𝐵 substr ⟨0, (𝑁𝐿)⟩))))))
7226, 71mpbird 247 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)) Fn (0..^(𝑁𝑀)))
73 simprl 811 . . . . . 6 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
74 simpr 479 . . . . . . . 8 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → 𝑘 ∈ (0..^(𝑁𝑀)))
7574anim2i 594 . . . . . . 7 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (𝑘 ∈ (0..^(𝐿𝑀)) ∧ 𝑘 ∈ (0..^(𝑁𝑀))))
7675ancomd 466 . . . . . 6 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (𝑘 ∈ (0..^(𝑁𝑀)) ∧ 𝑘 ∈ (0..^(𝐿𝑀))))
7710swrdccatin12lem3 13611 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝑘 ∈ (0..^(𝑁𝑀)) ∧ 𝑘 ∈ (0..^(𝐿𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝑘)))
7873, 76, 77sylc 65 . . . . 5 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝑘))
7924ad2antrl 766 . . . . . . 7 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 substr ⟨0, (𝑁𝐿)⟩) ∈ Word 𝑉))
80 simpl 474 . . . . . . . 8 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → 𝑘 ∈ (0..^(𝐿𝑀)))
81 nn0fz0 12552 . . . . . . . . . . . . . . . 16 ((♯‘𝐴) ∈ ℕ0 ↔ (♯‘𝐴) ∈ (0...(♯‘𝐴)))
8229, 81sylib 208 . . . . . . . . . . . . . . 15 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ (0...(♯‘𝐴)))
8310, 82syl5eqel 2807 . . . . . . . . . . . . . 14 (𝐴 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝐴)))
8483adantr 472 . . . . . . . . . . . . 13 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐿 ∈ (0...(♯‘𝐴)))
8584adantr 472 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝐿 ∈ (0...(♯‘𝐴)))
8627, 28, 853jca 1379 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐴))))
8786ad2antrl 766 . . . . . . . . . 10 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐴))))
8887, 37syl 17 . . . . . . . . 9 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) = (𝐿𝑀))
8988oveq2d 6781 . . . . . . . 8 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (0..^(♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))) = (0..^(𝐿𝑀)))
9080, 89eleqtrrd 2806 . . . . . . 7 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → 𝑘 ∈ (0..^(♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))))
91 df-3an 1074 . . . . . . 7 (((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 substr ⟨0, (𝑁𝐿)⟩) ∈ Word 𝑉𝑘 ∈ (0..^(♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)))) ↔ (((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 substr ⟨0, (𝑁𝐿)⟩) ∈ Word 𝑉) ∧ 𝑘 ∈ (0..^(♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)))))
9279, 90, 91sylanbrc 701 . . . . . 6 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 substr ⟨0, (𝑁𝐿)⟩) ∈ Word 𝑉𝑘 ∈ (0..^(♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)))))
93 ccatval1 13470 . . . . . 6 (((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 substr ⟨0, (𝑁𝐿)⟩) ∈ Word 𝑉𝑘 ∈ (0..^(♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)))) → (((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))‘𝑘) = ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝑘))
9492, 93syl 17 . . . . 5 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))‘𝑘) = ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝑘))
9578, 94eqtr4d 2761 . . . 4 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = (((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))‘𝑘))
96 simprl 811 . . . . . 6 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
9774anim2i 594 . . . . . . 7 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ 𝑘 ∈ (0..^(𝑁𝑀))))
9897ancomd 466 . . . . . 6 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (𝑘 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝑘 ∈ (0..^(𝐿𝑀))))
9910swrdccatin12lem2 13610 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝑘 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝑘 ∈ (0..^(𝐿𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐵 substr ⟨0, (𝑁𝐿)⟩)‘(𝑘 − (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))))))
10096, 98, 99sylc 65 . . . . 5 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐵 substr ⟨0, (𝑁𝐿)⟩)‘(𝑘 − (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)))))
10124ad2antrl 766 . . . . . . 7 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 substr ⟨0, (𝑁𝐿)⟩) ∈ Word 𝑉))
102 elfzuz 12452 . . . . . . . . . . . . 13 (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → 𝑁 ∈ (ℤ𝐿))
103 eluzelz 11810 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝐿) → 𝑁 ∈ ℤ)
104 simpll 807 . . . . . . . . . . . . . . . . . . 19 (((𝐿 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → 𝐿 ∈ ℕ0)
105 simpr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ ℕ0𝑀 ∈ ℕ0) → 𝑀 ∈ ℕ0)
106105adantr 472 . . . . . . . . . . . . . . . . . . 19 (((𝐿 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℕ0)
107 simpr 479 . . . . . . . . . . . . . . . . . . 19 (((𝐿 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
108104, 106, 1073jca 1379 . . . . . . . . . . . . . . . . . 18 (((𝐿 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ))
109108ex 449 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑁 ∈ ℤ → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ)))
110109ancoms 468 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑁 ∈ ℤ → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ)))
1111103adant3 1124 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑁 ∈ ℤ → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ)))
11251, 111sylbi 207 . . . . . . . . . . . . . 14 (𝑀 ∈ (0...𝐿) → (𝑁 ∈ ℤ → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ)))
113103, 112syl5com 31 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝐿) → (𝑀 ∈ (0...𝐿) → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ)))
114102, 113syl 17 . . . . . . . . . . . 12 (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → (𝑀 ∈ (0...𝐿) → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ)))
115114impcom 445 . . . . . . . . . . 11 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ))
116115adantl 473 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ))
117116ad2antrl 766 . . . . . . . . 9 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ))
118 swrdccatin12lem1 13605 . . . . . . . . 9 ((𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ) → ((𝑘 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝑘 ∈ (0..^(𝐿𝑀))) → 𝑘 ∈ ((𝐿𝑀)..^((𝐿𝑀) + (𝑁𝐿)))))
119117, 98, 118sylc 65 . . . . . . . 8 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → 𝑘 ∈ ((𝐿𝑀)..^((𝐿𝑀) + (𝑁𝐿))))
12027, 28, 85, 37syl3anc 1439 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) = (𝐿𝑀))
12139adantl 473 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) → 𝐵 ∈ Word 𝑉)
12243adantl 473 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) → (♯‘𝐵) ∈ ℤ)
123 simpl 474 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))
124122, 123, 46syl2anc 696 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) → (𝑁𝐿) ∈ (0...(♯‘𝐵)))
125121, 124jca 555 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) → (𝐵 ∈ Word 𝑉 ∧ (𝑁𝐿) ∈ (0...(♯‘𝐵))))
126125ex 449 . . . . . . . . . . . . . 14 (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐵 ∈ Word 𝑉 ∧ (𝑁𝐿) ∈ (0...(♯‘𝐵)))))
127126adantl 473 . . . . . . . . . . . . 13 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐵 ∈ Word 𝑉 ∧ (𝑁𝐿) ∈ (0...(♯‘𝐵)))))
128127impcom 445 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐵 ∈ Word 𝑉 ∧ (𝑁𝐿) ∈ (0...(♯‘𝐵))))
129128, 48syl 17 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (♯‘(𝐵 substr ⟨0, (𝑁𝐿)⟩)) = (𝑁𝐿))
130120, 129oveq12d 6783 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (♯‘(𝐵 substr ⟨0, (𝑁𝐿)⟩))) = ((𝐿𝑀) + (𝑁𝐿)))
131120, 130oveq12d 6783 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))..^((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (♯‘(𝐵 substr ⟨0, (𝑁𝐿)⟩)))) = ((𝐿𝑀)..^((𝐿𝑀) + (𝑁𝐿))))
132131ad2antrl 766 . . . . . . . 8 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → ((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))..^((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (♯‘(𝐵 substr ⟨0, (𝑁𝐿)⟩)))) = ((𝐿𝑀)..^((𝐿𝑀) + (𝑁𝐿))))
133119, 132eleqtrrd 2806 . . . . . . 7 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → 𝑘 ∈ ((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))..^((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (♯‘(𝐵 substr ⟨0, (𝑁𝐿)⟩)))))
134 df-3an 1074 . . . . . . 7 (((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 substr ⟨0, (𝑁𝐿)⟩) ∈ Word 𝑉𝑘 ∈ ((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))..^((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (♯‘(𝐵 substr ⟨0, (𝑁𝐿)⟩))))) ↔ (((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 substr ⟨0, (𝑁𝐿)⟩) ∈ Word 𝑉) ∧ 𝑘 ∈ ((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))..^((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (♯‘(𝐵 substr ⟨0, (𝑁𝐿)⟩))))))
135101, 133, 134sylanbrc 701 . . . . . 6 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 substr ⟨0, (𝑁𝐿)⟩) ∈ Word 𝑉𝑘 ∈ ((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))..^((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (♯‘(𝐵 substr ⟨0, (𝑁𝐿)⟩))))))
136 ccatval2 13471 . . . . . 6 (((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 substr ⟨0, (𝑁𝐿)⟩) ∈ Word 𝑉𝑘 ∈ ((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))..^((♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (♯‘(𝐵 substr ⟨0, (𝑁𝐿)⟩))))) → (((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))‘𝑘) = ((𝐵 substr ⟨0, (𝑁𝐿)⟩)‘(𝑘 − (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)))))
137135, 136syl 17 . . . . 5 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))‘𝑘) = ((𝐵 substr ⟨0, (𝑁𝐿)⟩)‘(𝑘 − (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)))))
138100, 137eqtr4d 2761 . . . 4 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = (((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))‘𝑘))
13995, 138pm2.61ian 866 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = (((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))‘𝑘))
14020, 72, 139eqfnfvd 6429 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))
141140ex 449 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1072   = wceq 1596  wcel 2103  wss 3680  cop 4291   class class class wbr 4760   Fn wfn 5996  cfv 6001  (class class class)co 6765  cc 10047  0cc0 10049   + caddc 10052  cle 10188  cmin 10379  0cn0 11405  cz 11490  cuz 11800  ...cfz 12440  ..^cfzo 12580  chash 13232  Word cword 13398   ++ cconcat 13400   substr csubstr 13402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-oadd 7684  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-card 8878  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-nn 11134  df-n0 11406  df-z 11491  df-uz 11801  df-fz 12441  df-fzo 12581  df-hash 13233  df-word 13406  df-concat 13408  df-substr 13410
This theorem is referenced by:  swrdccat3  13613  swrdccatin12d  13622
  Copyright terms: Public domain W3C validator