MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccat3blem Structured version   Visualization version   GIF version

Theorem swrdccat3blem 13666
Description: Lemma for swrdccat3b 13667. (Contributed by AV, 30-May-2018.)
Hypothesis
Ref Expression
swrdccatin12.l 𝐿 = (♯‘𝐴)
Assertion
Ref Expression
swrdccat3blem ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ (𝐿 + (♯‘𝐵)) ≤ 𝐿) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩))

Proof of Theorem swrdccat3blem
StepHypRef Expression
1 lencl 13481 . . . . . . . 8 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℕ0)
2 nn0le0eq0 11484 . . . . . . . . 9 ((♯‘𝐵) ∈ ℕ0 → ((♯‘𝐵) ≤ 0 ↔ (♯‘𝐵) = 0))
32biimpd 219 . . . . . . . 8 ((♯‘𝐵) ∈ ℕ0 → ((♯‘𝐵) ≤ 0 → (♯‘𝐵) = 0))
41, 3syl 17 . . . . . . 7 (𝐵 ∈ Word 𝑉 → ((♯‘𝐵) ≤ 0 → (♯‘𝐵) = 0))
54adantl 473 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘𝐵) ≤ 0 → (♯‘𝐵) = 0))
6 hasheq0 13317 . . . . . . . . . . 11 (𝐵 ∈ Word 𝑉 → ((♯‘𝐵) = 0 ↔ 𝐵 = ∅))
76biimpd 219 . . . . . . . . . 10 (𝐵 ∈ Word 𝑉 → ((♯‘𝐵) = 0 → 𝐵 = ∅))
87adantl 473 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘𝐵) = 0 → 𝐵 = ∅))
98imp 444 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐵) = 0) → 𝐵 = ∅)
10 lencl 13481 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
11 swrdccatin12.l . . . . . . . . . . . . . . . . . . 19 𝐿 = (♯‘𝐴)
1211eqcomi 2757 . . . . . . . . . . . . . . . . . 18 (♯‘𝐴) = 𝐿
1312eleq1i 2818 . . . . . . . . . . . . . . . . 17 ((♯‘𝐴) ∈ ℕ0𝐿 ∈ ℕ0)
14 nn0re 11464 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
15 elfz2nn0 12595 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ (0...(𝐿 + 0)) ↔ (𝑀 ∈ ℕ0 ∧ (𝐿 + 0) ∈ ℕ0𝑀 ≤ (𝐿 + 0)))
16 recn 10189 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐿 ∈ ℝ → 𝐿 ∈ ℂ)
1716addid1d 10399 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐿 ∈ ℝ → (𝐿 + 0) = 𝐿)
1817breq2d 4804 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐿 ∈ ℝ → (𝑀 ≤ (𝐿 + 0) ↔ 𝑀𝐿))
19 nn0re 11464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
2019anim1i 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑀 ∈ ℕ0𝐿 ∈ ℝ) → (𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ))
2120ancoms 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ))
22 letri3 10286 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑀 = 𝐿 ↔ (𝑀𝐿𝐿𝑀)))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → (𝑀 = 𝐿 ↔ (𝑀𝐿𝐿𝑀)))
2423biimprd 238 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → ((𝑀𝐿𝐿𝑀) → 𝑀 = 𝐿))
2524exp4b 633 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐿 ∈ ℝ → (𝑀 ∈ ℕ0 → (𝑀𝐿 → (𝐿𝑀𝑀 = 𝐿))))
2625com23 86 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐿 ∈ ℝ → (𝑀𝐿 → (𝑀 ∈ ℕ0 → (𝐿𝑀𝑀 = 𝐿))))
2718, 26sylbid 230 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐿 ∈ ℝ → (𝑀 ≤ (𝐿 + 0) → (𝑀 ∈ ℕ0 → (𝐿𝑀𝑀 = 𝐿))))
2827com3l 89 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ≤ (𝐿 + 0) → (𝑀 ∈ ℕ0 → (𝐿 ∈ ℝ → (𝐿𝑀𝑀 = 𝐿))))
2928impcom 445 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑀 ≤ (𝐿 + 0)) → (𝐿 ∈ ℝ → (𝐿𝑀𝑀 = 𝐿)))
30293adant2 1123 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℕ0 ∧ (𝐿 + 0) ∈ ℕ0𝑀 ≤ (𝐿 + 0)) → (𝐿 ∈ ℝ → (𝐿𝑀𝑀 = 𝐿)))
3130com12 32 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℝ → ((𝑀 ∈ ℕ0 ∧ (𝐿 + 0) ∈ ℕ0𝑀 ≤ (𝐿 + 0)) → (𝐿𝑀𝑀 = 𝐿)))
3215, 31syl5bi 232 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ ℝ → (𝑀 ∈ (0...(𝐿 + 0)) → (𝐿𝑀𝑀 = 𝐿)))
3314, 32syl 17 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℕ0 → (𝑀 ∈ (0...(𝐿 + 0)) → (𝐿𝑀𝑀 = 𝐿)))
3413, 33sylbi 207 . . . . . . . . . . . . . . . 16 ((♯‘𝐴) ∈ ℕ0 → (𝑀 ∈ (0...(𝐿 + 0)) → (𝐿𝑀𝑀 = 𝐿)))
3510, 34syl 17 . . . . . . . . . . . . . . 15 (𝐴 ∈ Word 𝑉 → (𝑀 ∈ (0...(𝐿 + 0)) → (𝐿𝑀𝑀 = 𝐿)))
3635imp 444 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...(𝐿 + 0))) → (𝐿𝑀𝑀 = 𝐿))
37 elfznn0 12597 . . . . . . . . . . . . . . . 16 (𝑀 ∈ (0...(𝐿 + 0)) → 𝑀 ∈ ℕ0)
38 swrd00 13588 . . . . . . . . . . . . . . . . . . . . . 22 (∅ substr ⟨0, 0⟩) = ∅
39 swrd00 13588 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 substr ⟨𝐿, 𝐿⟩) = ∅
4038, 39eqtr4i 2773 . . . . . . . . . . . . . . . . . . . . 21 (∅ substr ⟨0, 0⟩) = (𝐴 substr ⟨𝐿, 𝐿⟩)
41 nn0cn 11465 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐿 ∈ ℕ0𝐿 ∈ ℂ)
4241subidd 10543 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐿 ∈ ℕ0 → (𝐿𝐿) = 0)
4342opeq1d 4547 . . . . . . . . . . . . . . . . . . . . . 22 (𝐿 ∈ ℕ0 → ⟨(𝐿𝐿), 0⟩ = ⟨0, 0⟩)
4443oveq2d 6817 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℕ0 → (∅ substr ⟨(𝐿𝐿), 0⟩) = (∅ substr ⟨0, 0⟩))
4541addid1d 10399 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐿 ∈ ℕ0 → (𝐿 + 0) = 𝐿)
4645opeq2d 4548 . . . . . . . . . . . . . . . . . . . . . 22 (𝐿 ∈ ℕ0 → ⟨𝐿, (𝐿 + 0)⟩ = ⟨𝐿, 𝐿⟩)
4746oveq2d 6817 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℕ0 → (𝐴 substr ⟨𝐿, (𝐿 + 0)⟩) = (𝐴 substr ⟨𝐿, 𝐿⟩))
4840, 44, 473eqtr4a 2808 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ∈ ℕ0 → (∅ substr ⟨(𝐿𝐿), 0⟩) = (𝐴 substr ⟨𝐿, (𝐿 + 0)⟩))
4948a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑀 = 𝐿 → (𝐿 ∈ ℕ0 → (∅ substr ⟨(𝐿𝐿), 0⟩) = (𝐴 substr ⟨𝐿, (𝐿 + 0)⟩)))
50 eleq1 2815 . . . . . . . . . . . . . . . . . . 19 (𝑀 = 𝐿 → (𝑀 ∈ ℕ0𝐿 ∈ ℕ0))
51 oveq1 6808 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 = 𝐿 → (𝑀𝐿) = (𝐿𝐿))
5251opeq1d 4547 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 = 𝐿 → ⟨(𝑀𝐿), 0⟩ = ⟨(𝐿𝐿), 0⟩)
5352oveq2d 6817 . . . . . . . . . . . . . . . . . . . 20 (𝑀 = 𝐿 → (∅ substr ⟨(𝑀𝐿), 0⟩) = (∅ substr ⟨(𝐿𝐿), 0⟩))
54 opeq1 4541 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 = 𝐿 → ⟨𝑀, (𝐿 + 0)⟩ = ⟨𝐿, (𝐿 + 0)⟩)
5554oveq2d 6817 . . . . . . . . . . . . . . . . . . . 20 (𝑀 = 𝐿 → (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩) = (𝐴 substr ⟨𝐿, (𝐿 + 0)⟩))
5653, 55eqeq12d 2763 . . . . . . . . . . . . . . . . . . 19 (𝑀 = 𝐿 → ((∅ substr ⟨(𝑀𝐿), 0⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩) ↔ (∅ substr ⟨(𝐿𝐿), 0⟩) = (𝐴 substr ⟨𝐿, (𝐿 + 0)⟩)))
5749, 50, 563imtr4d 283 . . . . . . . . . . . . . . . . . 18 (𝑀 = 𝐿 → (𝑀 ∈ ℕ0 → (∅ substr ⟨(𝑀𝐿), 0⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩)))
5857com12 32 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0 → (𝑀 = 𝐿 → (∅ substr ⟨(𝑀𝐿), 0⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩)))
5958a1d 25 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → (𝐴 ∈ Word 𝑉 → (𝑀 = 𝐿 → (∅ substr ⟨(𝑀𝐿), 0⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))))
6037, 59syl 17 . . . . . . . . . . . . . . 15 (𝑀 ∈ (0...(𝐿 + 0)) → (𝐴 ∈ Word 𝑉 → (𝑀 = 𝐿 → (∅ substr ⟨(𝑀𝐿), 0⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))))
6160impcom 445 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...(𝐿 + 0))) → (𝑀 = 𝐿 → (∅ substr ⟨(𝑀𝐿), 0⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩)))
6236, 61syld 47 . . . . . . . . . . . . 13 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...(𝐿 + 0))) → (𝐿𝑀 → (∅ substr ⟨(𝑀𝐿), 0⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩)))
6362imp 444 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝑀 ∈ (0...(𝐿 + 0))) ∧ 𝐿𝑀) → (∅ substr ⟨(𝑀𝐿), 0⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))
64 swrdcl 13589 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Word 𝑉 → (𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉)
65 ccatrid 13530 . . . . . . . . . . . . . . . 16 ((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅) = (𝐴 substr ⟨𝑀, 𝐿⟩))
6664, 65syl 17 . . . . . . . . . . . . . . 15 (𝐴 ∈ Word 𝑉 → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅) = (𝐴 substr ⟨𝑀, 𝐿⟩))
6713, 41sylbi 207 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐴) ∈ ℕ0𝐿 ∈ ℂ)
6810, 67syl 17 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ Word 𝑉𝐿 ∈ ℂ)
69 addid1 10379 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℂ → (𝐿 + 0) = 𝐿)
7069eqcomd 2754 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ ℂ → 𝐿 = (𝐿 + 0))
7168, 70syl 17 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Word 𝑉𝐿 = (𝐿 + 0))
7271opeq2d 4548 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Word 𝑉 → ⟨𝑀, 𝐿⟩ = ⟨𝑀, (𝐿 + 0)⟩)
7372oveq2d 6817 . . . . . . . . . . . . . . 15 (𝐴 ∈ Word 𝑉 → (𝐴 substr ⟨𝑀, 𝐿⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))
7466, 73eqtrd 2782 . . . . . . . . . . . . . 14 (𝐴 ∈ Word 𝑉 → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))
7574adantr 472 . . . . . . . . . . . . 13 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...(𝐿 + 0))) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))
7675adantr 472 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝑀 ∈ (0...(𝐿 + 0))) ∧ ¬ 𝐿𝑀) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))
7763, 76ifeqda 4253 . . . . . . . . . . 11 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...(𝐿 + 0))) → if(𝐿𝑀, (∅ substr ⟨(𝑀𝐿), 0⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅)) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))
7877ex 449 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉 → (𝑀 ∈ (0...(𝐿 + 0)) → if(𝐿𝑀, (∅ substr ⟨(𝑀𝐿), 0⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅)) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩)))
7978ad3antrrr 768 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐵) = 0) ∧ 𝐵 = ∅) → (𝑀 ∈ (0...(𝐿 + 0)) → if(𝐿𝑀, (∅ substr ⟨(𝑀𝐿), 0⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅)) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩)))
80 oveq2 6809 . . . . . . . . . . . . . 14 ((♯‘𝐵) = 0 → (𝐿 + (♯‘𝐵)) = (𝐿 + 0))
8180oveq2d 6817 . . . . . . . . . . . . 13 ((♯‘𝐵) = 0 → (0...(𝐿 + (♯‘𝐵))) = (0...(𝐿 + 0)))
8281eleq2d 2813 . . . . . . . . . . . 12 ((♯‘𝐵) = 0 → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) ↔ 𝑀 ∈ (0...(𝐿 + 0))))
8382adantr 472 . . . . . . . . . . 11 (((♯‘𝐵) = 0 ∧ 𝐵 = ∅) → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) ↔ 𝑀 ∈ (0...(𝐿 + 0))))
84 simpr 479 . . . . . . . . . . . . . 14 (((♯‘𝐵) = 0 ∧ 𝐵 = ∅) → 𝐵 = ∅)
85 opeq2 4542 . . . . . . . . . . . . . . 15 ((♯‘𝐵) = 0 → ⟨(𝑀𝐿), (♯‘𝐵)⟩ = ⟨(𝑀𝐿), 0⟩)
8685adantr 472 . . . . . . . . . . . . . 14 (((♯‘𝐵) = 0 ∧ 𝐵 = ∅) → ⟨(𝑀𝐿), (♯‘𝐵)⟩ = ⟨(𝑀𝐿), 0⟩)
8784, 86oveq12d 6819 . . . . . . . . . . . . 13 (((♯‘𝐵) = 0 ∧ 𝐵 = ∅) → (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩) = (∅ substr ⟨(𝑀𝐿), 0⟩))
88 oveq2 6809 . . . . . . . . . . . . . 14 (𝐵 = ∅ → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅))
8988adantl 473 . . . . . . . . . . . . 13 (((♯‘𝐵) = 0 ∧ 𝐵 = ∅) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅))
9087, 89ifeq12d 4238 . . . . . . . . . . . 12 (((♯‘𝐵) = 0 ∧ 𝐵 = ∅) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = if(𝐿𝑀, (∅ substr ⟨(𝑀𝐿), 0⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅)))
9180opeq2d 4548 . . . . . . . . . . . . . 14 ((♯‘𝐵) = 0 → ⟨𝑀, (𝐿 + (♯‘𝐵))⟩ = ⟨𝑀, (𝐿 + 0)⟩)
9291oveq2d 6817 . . . . . . . . . . . . 13 ((♯‘𝐵) = 0 → (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))
9392adantr 472 . . . . . . . . . . . 12 (((♯‘𝐵) = 0 ∧ 𝐵 = ∅) → (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))
9490, 93eqeq12d 2763 . . . . . . . . . . 11 (((♯‘𝐵) = 0 ∧ 𝐵 = ∅) → (if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) ↔ if(𝐿𝑀, (∅ substr ⟨(𝑀𝐿), 0⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅)) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩)))
9583, 94imbi12d 333 . . . . . . . . . 10 (((♯‘𝐵) = 0 ∧ 𝐵 = ∅) → ((𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩)) ↔ (𝑀 ∈ (0...(𝐿 + 0)) → if(𝐿𝑀, (∅ substr ⟨(𝑀𝐿), 0⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅)) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))))
9695adantll 752 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐵) = 0) ∧ 𝐵 = ∅) → ((𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩)) ↔ (𝑀 ∈ (0...(𝐿 + 0)) → if(𝐿𝑀, (∅ substr ⟨(𝑀𝐿), 0⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅)) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))))
9779, 96mpbird 247 . . . . . . . 8 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐵) = 0) ∧ 𝐵 = ∅) → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩)))
989, 97mpdan 705 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐵) = 0) → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩)))
9998ex 449 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘𝐵) = 0 → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩))))
1005, 99syld 47 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘𝐵) ≤ 0 → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩))))
101100com23 86 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → ((♯‘𝐵) ≤ 0 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩))))
102101imp 444 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((♯‘𝐵) ≤ 0 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩)))
103102adantr 472 . 2 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ (𝐿 + (♯‘𝐵)) ≤ 𝐿) → ((♯‘𝐵) ≤ 0 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩)))
10411eleq1i 2818 . . . . . . . 8 (𝐿 ∈ ℕ0 ↔ (♯‘𝐴) ∈ ℕ0)
105104, 14sylbir 225 . . . . . . 7 ((♯‘𝐴) ∈ ℕ0𝐿 ∈ ℝ)
10610, 105syl 17 . . . . . 6 (𝐴 ∈ Word 𝑉𝐿 ∈ ℝ)
1071nn0red 11515 . . . . . 6 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℝ)
108 leaddle0 10706 . . . . . 6 ((𝐿 ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ) → ((𝐿 + (♯‘𝐵)) ≤ 𝐿 ↔ (♯‘𝐵) ≤ 0))
109106, 107, 108syl2an 495 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝐿 + (♯‘𝐵)) ≤ 𝐿 ↔ (♯‘𝐵) ≤ 0))
110 pm2.24 121 . . . . 5 ((♯‘𝐵) ≤ 0 → (¬ (♯‘𝐵) ≤ 0 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩)))
111109, 110syl6bi 243 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝐿 + (♯‘𝐵)) ≤ 𝐿 → (¬ (♯‘𝐵) ≤ 0 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩))))
112111adantr 472 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐿 + (♯‘𝐵)) ≤ 𝐿 → (¬ (♯‘𝐵) ≤ 0 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩))))
113112imp 444 . 2 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ (𝐿 + (♯‘𝐵)) ≤ 𝐿) → (¬ (♯‘𝐵) ≤ 0 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩)))
114103, 113pm2.61d 170 1 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ (𝐿 + (♯‘𝐵)) ≤ 𝐿) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1620  wcel 2127  c0 4046  ifcif 4218  cop 4315   class class class wbr 4792  cfv 6037  (class class class)co 6801  cc 10097  cr 10098  0cc0 10099   + caddc 10102  cle 10238  cmin 10429  0cn0 11455  ...cfz 12490  chash 13282  Word cword 13448   ++ cconcat 13450   substr csubstr 13452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8926  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-nn 11184  df-n0 11456  df-z 11541  df-uz 11851  df-fz 12491  df-fzo 12631  df-hash 13283  df-word 13456  df-concat 13458  df-substr 13460
This theorem is referenced by:  swrdccat3b  13667
  Copyright terms: Public domain W3C validator