Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccat3b Structured version   Visualization version   GIF version

Theorem swrdccat3b 13667
 Description: A suffix of a concatenation is either a suffix of the second concatenated word or a concatenation of a suffix of the first word with the second word. (Contributed by Alexander van der Vekens, 31-Mar-2018.) (Revised by Alexander van der Vekens, 30-May-2018.)
Hypothesis
Ref Expression
swrdccatin12.l 𝐿 = (♯‘𝐴)
Assertion
Ref Expression
swrdccat3b ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵))))

Proof of Theorem swrdccat3b
StepHypRef Expression
1 simpl 474 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
2 simpr 479 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → 𝑀 ∈ (0...(𝐿 + (♯‘𝐵))))
3 elfzubelfz 12517 . . . . 5 (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → (𝐿 + (♯‘𝐵)) ∈ (0...(𝐿 + (♯‘𝐵))))
43adantl 473 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿 + (♯‘𝐵)) ∈ (0...(𝐿 + (♯‘𝐵))))
5 swrdccatin12.l . . . . . 6 𝐿 = (♯‘𝐴)
65swrdccat3 13663 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (𝐿 + (♯‘𝐵)) ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = if((𝐿 + (♯‘𝐵)) ≤ 𝐿, (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (♯‘𝐵)) − 𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, ((𝐿 + (♯‘𝐵)) − 𝐿)⟩))))))
76imp 444 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (𝐿 + (♯‘𝐵)) ∈ (0...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = if((𝐿 + (♯‘𝐵)) ≤ 𝐿, (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (♯‘𝐵)) − 𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, ((𝐿 + (♯‘𝐵)) − 𝐿)⟩)))))
81, 2, 4, 7syl12anc 1461 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = if((𝐿 + (♯‘𝐵)) ≤ 𝐿, (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (♯‘𝐵)) − 𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, ((𝐿 + (♯‘𝐵)) − 𝐿)⟩)))))
95swrdccat3blem 13666 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ (𝐿 + (♯‘𝐵)) ≤ 𝐿) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩))
10 iftrue 4224 . . . . . 6 (𝐿𝑀 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩))
11103ad2ant3 1127 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿𝐿𝑀) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩))
12 lencl 13481 . . . . . . . . . . . 12 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
1312nn0cnd 11516 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℂ)
14 lencl 13481 . . . . . . . . . . . 12 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℕ0)
1514nn0cnd 11516 . . . . . . . . . . 11 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℂ)
165eqcomi 2757 . . . . . . . . . . . . 13 (♯‘𝐴) = 𝐿
1716eleq1i 2818 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ ℂ ↔ 𝐿 ∈ ℂ)
18 pncan2 10451 . . . . . . . . . . . 12 ((𝐿 ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((𝐿 + (♯‘𝐵)) − 𝐿) = (♯‘𝐵))
1917, 18sylanb 490 . . . . . . . . . . 11 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((𝐿 + (♯‘𝐵)) − 𝐿) = (♯‘𝐵))
2013, 15, 19syl2an 495 . . . . . . . . . 10 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝐿 + (♯‘𝐵)) − 𝐿) = (♯‘𝐵))
2120eqcomd 2754 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (♯‘𝐵) = ((𝐿 + (♯‘𝐵)) − 𝐿))
2221adantr 472 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → (♯‘𝐵) = ((𝐿 + (♯‘𝐵)) − 𝐿))
23223ad2ant1 1125 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿𝐿𝑀) → (♯‘𝐵) = ((𝐿 + (♯‘𝐵)) − 𝐿))
2423opeq2d 4548 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿𝐿𝑀) → ⟨(𝑀𝐿), (♯‘𝐵)⟩ = ⟨(𝑀𝐿), ((𝐿 + (♯‘𝐵)) − 𝐿)⟩)
2524oveq2d 6817 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿𝐿𝑀) → (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩) = (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (♯‘𝐵)) − 𝐿)⟩))
2611, 25eqtrd 2782 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿𝐿𝑀) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (♯‘𝐵)) − 𝐿)⟩))
27 iffalse 4227 . . . . . 6 𝐿𝑀 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵))
28273ad2ant3 1127 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵))
2920adantr 472 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐿 + (♯‘𝐵)) − 𝐿) = (♯‘𝐵))
30293ad2ant1 1125 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → ((𝐿 + (♯‘𝐵)) − 𝐿) = (♯‘𝐵))
3130opeq2d 4548 . . . . . . . 8 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → ⟨0, ((𝐿 + (♯‘𝐵)) − 𝐿)⟩ = ⟨0, (♯‘𝐵)⟩)
3231oveq2d 6817 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → (𝐵 substr ⟨0, ((𝐿 + (♯‘𝐵)) − 𝐿)⟩) = (𝐵 substr ⟨0, (♯‘𝐵)⟩))
33 swrdid 13599 . . . . . . . . . 10 (𝐵 ∈ Word 𝑉 → (𝐵 substr ⟨0, (♯‘𝐵)⟩) = 𝐵)
3433adantl 473 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐵 substr ⟨0, (♯‘𝐵)⟩) = 𝐵)
3534adantr 472 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐵 substr ⟨0, (♯‘𝐵)⟩) = 𝐵)
36353ad2ant1 1125 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → (𝐵 substr ⟨0, (♯‘𝐵)⟩) = 𝐵)
3732, 36eqtr2d 2783 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → 𝐵 = (𝐵 substr ⟨0, ((𝐿 + (♯‘𝐵)) − 𝐿)⟩))
3837oveq2d 6817 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, ((𝐿 + (♯‘𝐵)) − 𝐿)⟩)))
3928, 38eqtrd 2782 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, ((𝐿 + (♯‘𝐵)) − 𝐿)⟩)))
409, 26, 392if2 4268 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = if((𝐿 + (♯‘𝐵)) ≤ 𝐿, (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (♯‘𝐵)) − 𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, ((𝐿 + (♯‘𝐵)) − 𝐿)⟩)))))
418, 40eqtr4d 2785 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)))
4241ex 449 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1620   ∈ wcel 2127  ifcif 4218  ⟨cop 4315   class class class wbr 4792  ‘cfv 6037  (class class class)co 6801  ℂcc 10097  0cc0 10099   + caddc 10102   ≤ cle 10238   − cmin 10429  ...cfz 12490  ♯chash 13282  Word cword 13448   ++ cconcat 13450   substr csubstr 13452 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8926  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-nn 11184  df-n0 11456  df-z 11541  df-uz 11851  df-fz 12491  df-fzo 12631  df-hash 13283  df-word 13456  df-concat 13458  df-substr 13460 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator