MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrd2lsw Structured version   Visualization version   GIF version

Theorem swrd2lsw 13896
Description: Extract the last two symbols from a word. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
Assertion
Ref Expression
swrd2lsw ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩)

Proof of Theorem swrd2lsw
StepHypRef Expression
1 simpl 474 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → 𝑊 ∈ Word 𝑉)
2 lencl 13510 . . . . 5 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
3 1z 11599 . . . . . . . . 9 1 ∈ ℤ
4 nn0z 11592 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℤ)
5 zltp1le 11619 . . . . . . . . 9 ((1 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) → (1 < (♯‘𝑊) ↔ (1 + 1) ≤ (♯‘𝑊)))
63, 4, 5sylancr 698 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (1 < (♯‘𝑊) ↔ (1 + 1) ≤ (♯‘𝑊)))
7 1p1e2 11326 . . . . . . . . . . 11 (1 + 1) = 2
87a1i 11 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → (1 + 1) = 2)
98breq1d 4814 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → ((1 + 1) ≤ (♯‘𝑊) ↔ 2 ≤ (♯‘𝑊)))
109biimpd 219 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → ((1 + 1) ≤ (♯‘𝑊) → 2 ≤ (♯‘𝑊)))
116, 10sylbid 230 . . . . . . 7 ((♯‘𝑊) ∈ ℕ0 → (1 < (♯‘𝑊) → 2 ≤ (♯‘𝑊)))
1211imp 444 . . . . . 6 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → 2 ≤ (♯‘𝑊))
13 2nn0 11501 . . . . . . . . 9 2 ∈ ℕ0
1413jctl 565 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (2 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0))
1514adantr 472 . . . . . . 7 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (2 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0))
16 nn0sub 11535 . . . . . . 7 ((2 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0) → (2 ≤ (♯‘𝑊) ↔ ((♯‘𝑊) − 2) ∈ ℕ0))
1715, 16syl 17 . . . . . 6 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (2 ≤ (♯‘𝑊) ↔ ((♯‘𝑊) − 2) ∈ ℕ0))
1812, 17mpbid 222 . . . . 5 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 2) ∈ ℕ0)
192, 18sylan 489 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 2) ∈ ℕ0)
20 0red 10233 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℤ → 0 ∈ ℝ)
21 1red 10247 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℤ → 1 ∈ ℝ)
22 zre 11573 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℤ → (♯‘𝑊) ∈ ℝ)
2320, 21, 223jca 1123 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℤ → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ))
24 0lt1 10742 . . . . . . . . . . 11 0 < 1
25 lttr 10306 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → ((0 < 1 ∧ 1 < (♯‘𝑊)) → 0 < (♯‘𝑊)))
2625expd 451 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → (0 < 1 → (1 < (♯‘𝑊) → 0 < (♯‘𝑊))))
2723, 24, 26mpisyl 21 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℤ → (1 < (♯‘𝑊) → 0 < (♯‘𝑊)))
28 elnnz 11579 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℤ ∧ 0 < (♯‘𝑊)))
2928simplbi2 656 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℤ → (0 < (♯‘𝑊) → (♯‘𝑊) ∈ ℕ))
3027, 29syld 47 . . . . . . . . 9 ((♯‘𝑊) ∈ ℤ → (1 < (♯‘𝑊) → (♯‘𝑊) ∈ ℕ))
314, 30syl 17 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (1 < (♯‘𝑊) → (♯‘𝑊) ∈ ℕ))
3231imp 444 . . . . . . 7 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
33 fzo0end 12754 . . . . . . 7 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
3432, 33syl 17 . . . . . 6 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
35 nn0cn 11494 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℂ)
36 2cn 11283 . . . . . . . . . . . 12 2 ∈ ℂ
3736a1i 11 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ0 → 2 ∈ ℂ)
38 1cnd 10248 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ0 → 1 ∈ ℂ)
3935, 37, 383jca 1123 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ))
40 1e2m1 11328 . . . . . . . . . . . . 13 1 = (2 − 1)
4140a1i 11 . . . . . . . . . . . 12 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → 1 = (2 − 1))
4241oveq2d 6829 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((♯‘𝑊) − 1) = ((♯‘𝑊) − (2 − 1)))
43 subsub 10503 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((♯‘𝑊) − (2 − 1)) = (((♯‘𝑊) − 2) + 1))
4442, 43eqtrd 2794 . . . . . . . . . 10 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((♯‘𝑊) − 1) = (((♯‘𝑊) − 2) + 1))
4539, 44syl 17 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) = (((♯‘𝑊) − 2) + 1))
4645eqcomd 2766 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (((♯‘𝑊) − 2) + 1) = ((♯‘𝑊) − 1))
4746eleq1d 2824 . . . . . . 7 ((♯‘𝑊) ∈ ℕ0 → ((((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊)) ↔ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))))
4847adantr 472 . . . . . 6 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → ((((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊)) ↔ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))))
4934, 48mpbird 247 . . . . 5 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊)))
502, 49sylan 489 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊)))
511, 19, 503jca 1123 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 2) ∈ ℕ0 ∧ (((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊))))
52 swrds2 13885 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 2) ∈ ℕ0 ∧ (((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨((♯‘𝑊) − 2), (((♯‘𝑊) − 2) + 2)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 2))(𝑊‘(((♯‘𝑊) − 2) + 1))”⟩)
5351, 52syl 17 . 2 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 substr ⟨((♯‘𝑊) − 2), (((♯‘𝑊) − 2) + 2)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 2))(𝑊‘(((♯‘𝑊) − 2) + 1))”⟩)
5435, 36jctir 562 . . . . . 6 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ))
55 npcan 10482 . . . . . . 7 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ) → (((♯‘𝑊) − 2) + 2) = (♯‘𝑊))
5655eqcomd 2766 . . . . . 6 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ) → (♯‘𝑊) = (((♯‘𝑊) − 2) + 2))
572, 54, 563syl 18 . . . . 5 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) = (((♯‘𝑊) − 2) + 2))
5857adantr 472 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (♯‘𝑊) = (((♯‘𝑊) − 2) + 2))
5958opeq2d 4560 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩ = ⟨((♯‘𝑊) − 2), (((♯‘𝑊) − 2) + 2)⟩)
6059oveq2d 6829 . 2 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = (𝑊 substr ⟨((♯‘𝑊) − 2), (((♯‘𝑊) − 2) + 2)⟩))
61 eqidd 2761 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊‘((♯‘𝑊) − 2)) = (𝑊‘((♯‘𝑊) − 2)))
62 lsw 13538 . . . . 5 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
6339, 43syl 17 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − (2 − 1)) = (((♯‘𝑊) − 2) + 1))
6463eqcomd 2766 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → (((♯‘𝑊) − 2) + 1) = ((♯‘𝑊) − (2 − 1)))
65 2m1e1 11327 . . . . . . . . . . 11 (2 − 1) = 1
6665a1i 11 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → (2 − 1) = 1)
6766oveq2d 6829 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − (2 − 1)) = ((♯‘𝑊) − 1))
6864, 67eqtrd 2794 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (((♯‘𝑊) − 2) + 1) = ((♯‘𝑊) − 1))
692, 68syl 17 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (((♯‘𝑊) − 2) + 1) = ((♯‘𝑊) − 1))
7069eqcomd 2766 . . . . . 6 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) − 1) = (((♯‘𝑊) − 2) + 1))
7170fveq2d 6356 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘(((♯‘𝑊) − 2) + 1)))
7262, 71eqtrd 2794 . . . 4 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘(((♯‘𝑊) − 2) + 1)))
7372adantr 472 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (lastS‘𝑊) = (𝑊‘(((♯‘𝑊) − 2) + 1)))
7461, 73s2eqd 13808 . 2 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → ⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩ = ⟨“(𝑊‘((♯‘𝑊) − 2))(𝑊‘(((♯‘𝑊) − 2) + 1))”⟩)
7553, 60, 743eqtr4d 2804 1 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  cop 4327   class class class wbr 4804  cfv 6049  (class class class)co 6813  cc 10126  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   < clt 10266  cle 10267  cmin 10458  cn 11212  2c2 11262  0cn0 11484  cz 11569  ..^cfzo 12659  chash 13311  Word cword 13477  lastSclsw 13478   substr csubstr 13481  ⟨“cs2 13786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-fzo 12660  df-hash 13312  df-word 13485  df-lsw 13486  df-concat 13487  df-s1 13488  df-substr 13489  df-s2 13793
This theorem is referenced by:  2swrd2eqwrdeq  13897
  Copyright terms: Public domain W3C validator