![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > swrd0val | Structured version Visualization version GIF version |
Description: Value of the subword extractor for left-anchored subwords. (Contributed by Stefan O'Rear, 24-Aug-2015.) |
Ref | Expression |
---|---|
swrd0val | ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr 〈0, 𝐿〉) = (𝑆 ↾ (0..^𝐿))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzelz 12535 | . . . . . . . 8 ⊢ (𝐿 ∈ (0...(♯‘𝑆)) → 𝐿 ∈ ℤ) | |
2 | 1 | adantl 473 | . . . . . . 7 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 𝐿 ∈ ℤ) |
3 | 2 | zcnd 11675 | . . . . . 6 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 𝐿 ∈ ℂ) |
4 | 3 | subid1d 10573 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝐿 − 0) = 𝐿) |
5 | 4 | oveq2d 6829 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (0..^(𝐿 − 0)) = (0..^𝐿)) |
6 | 5 | mpteq1d 4890 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0))) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆‘(𝑥 + 0)))) |
7 | elfzoelz 12664 | . . . . . . . 8 ⊢ (𝑥 ∈ (0..^𝐿) → 𝑥 ∈ ℤ) | |
8 | 7 | zcnd 11675 | . . . . . . 7 ⊢ (𝑥 ∈ (0..^𝐿) → 𝑥 ∈ ℂ) |
9 | 8 | addid1d 10428 | . . . . . 6 ⊢ (𝑥 ∈ (0..^𝐿) → (𝑥 + 0) = 𝑥) |
10 | 9 | fveq2d 6356 | . . . . 5 ⊢ (𝑥 ∈ (0..^𝐿) → (𝑆‘(𝑥 + 0)) = (𝑆‘𝑥)) |
11 | 10 | adantl 473 | . . . 4 ⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^𝐿)) → (𝑆‘(𝑥 + 0)) = (𝑆‘𝑥)) |
12 | 11 | mpteq2dva 4896 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑥 ∈ (0..^𝐿) ↦ (𝑆‘(𝑥 + 0))) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆‘𝑥))) |
13 | 6, 12 | eqtrd 2794 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0))) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆‘𝑥))) |
14 | simpl 474 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 𝑆 ∈ Word 𝐴) | |
15 | elfzuz 12531 | . . . . 5 ⊢ (𝐿 ∈ (0...(♯‘𝑆)) → 𝐿 ∈ (ℤ≥‘0)) | |
16 | 15 | adantl 473 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 𝐿 ∈ (ℤ≥‘0)) |
17 | eluzfz1 12541 | . . . 4 ⊢ (𝐿 ∈ (ℤ≥‘0) → 0 ∈ (0...𝐿)) | |
18 | 16, 17 | syl 17 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 0 ∈ (0...𝐿)) |
19 | simpr 479 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 𝐿 ∈ (0...(♯‘𝑆))) | |
20 | swrdval2 13619 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 0 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr 〈0, 𝐿〉) = (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0)))) | |
21 | 14, 18, 19, 20 | syl3anc 1477 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr 〈0, 𝐿〉) = (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0)))) |
22 | wrdf 13496 | . . . 4 ⊢ (𝑆 ∈ Word 𝐴 → 𝑆:(0..^(♯‘𝑆))⟶𝐴) | |
23 | 22 | adantr 472 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 𝑆:(0..^(♯‘𝑆))⟶𝐴) |
24 | elfzuz3 12532 | . . . . 5 ⊢ (𝐿 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ (ℤ≥‘𝐿)) | |
25 | 24 | adantl 473 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (♯‘𝑆) ∈ (ℤ≥‘𝐿)) |
26 | fzoss2 12690 | . . . 4 ⊢ ((♯‘𝑆) ∈ (ℤ≥‘𝐿) → (0..^𝐿) ⊆ (0..^(♯‘𝑆))) | |
27 | 25, 26 | syl 17 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (0..^𝐿) ⊆ (0..^(♯‘𝑆))) |
28 | 23, 27 | feqresmpt 6412 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 ↾ (0..^𝐿)) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆‘𝑥))) |
29 | 13, 21, 28 | 3eqtr4d 2804 | 1 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr 〈0, 𝐿〉) = (𝑆 ↾ (0..^𝐿))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ⊆ wss 3715 〈cop 4327 ↦ cmpt 4881 ↾ cres 5268 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 0cc0 10128 + caddc 10131 − cmin 10458 ℤcz 11569 ℤ≥cuz 11879 ...cfz 12519 ..^cfzo 12659 ♯chash 13311 Word cword 13477 substr csubstr 13481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-card 8955 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-n0 11485 df-z 11570 df-uz 11880 df-fz 12520 df-fzo 12660 df-hash 13312 df-word 13485 df-substr 13489 |
This theorem is referenced by: swrd0len 13621 swrdccat1 13657 psgnunilem5 18114 efgsres 18351 efgredlemd 18357 efgredlem 18360 wlkreslem0 26775 wwlksm1edg 26990 iwrdsplit 30758 wrdsplex 30927 signsvtn0 30956 |
Copyright terms: Public domain | W3C validator |