MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swoord2 Structured version   Visualization version   GIF version

Theorem swoord2 7759
Description: The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.)
Hypotheses
Ref Expression
swoer.1 𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))
swoer.2 ((𝜑 ∧ (𝑦𝑋𝑧𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦))
swoer.3 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
swoord.4 (𝜑𝐵𝑋)
swoord.5 (𝜑𝐶𝑋)
swoord.6 (𝜑𝐴𝑅𝐵)
Assertion
Ref Expression
swoord2 (𝜑 → (𝐶 < 𝐴𝐶 < 𝐵))
Distinct variable groups:   𝑥,𝑦,𝑧, <   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑧)

Proof of Theorem swoord2
StepHypRef Expression
1 id 22 . . . 4 (𝜑𝜑)
2 swoord.5 . . . 4 (𝜑𝐶𝑋)
3 swoord.6 . . . . 5 (𝜑𝐴𝑅𝐵)
4 swoer.1 . . . . . . 7 𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))
5 difss 3729 . . . . . . 7 ((𝑋 × 𝑋) ∖ ( < < )) ⊆ (𝑋 × 𝑋)
64, 5eqsstri 3627 . . . . . 6 𝑅 ⊆ (𝑋 × 𝑋)
76ssbri 4688 . . . . 5 (𝐴𝑅𝐵𝐴(𝑋 × 𝑋)𝐵)
8 df-br 4645 . . . . . 6 (𝐴(𝑋 × 𝑋)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋))
9 opelxp1 5140 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋) → 𝐴𝑋)
108, 9sylbi 207 . . . . 5 (𝐴(𝑋 × 𝑋)𝐵𝐴𝑋)
113, 7, 103syl 18 . . . 4 (𝜑𝐴𝑋)
12 swoord.4 . . . 4 (𝜑𝐵𝑋)
13 swoer.3 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
1413swopolem 5034 . . . 4 ((𝜑 ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐶 < 𝐴 → (𝐶 < 𝐵𝐵 < 𝐴)))
151, 2, 11, 12, 14syl13anc 1326 . . 3 (𝜑 → (𝐶 < 𝐴 → (𝐶 < 𝐵𝐵 < 𝐴)))
16 idd 24 . . . 4 (𝜑 → (𝐶 < 𝐵𝐶 < 𝐵))
174brdifun 7756 . . . . . . . 8 ((𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
1811, 12, 17syl2anc 692 . . . . . . 7 (𝜑 → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
193, 18mpbid 222 . . . . . 6 (𝜑 → ¬ (𝐴 < 𝐵𝐵 < 𝐴))
20 olc 399 . . . . . 6 (𝐵 < 𝐴 → (𝐴 < 𝐵𝐵 < 𝐴))
2119, 20nsyl 135 . . . . 5 (𝜑 → ¬ 𝐵 < 𝐴)
2221pm2.21d 118 . . . 4 (𝜑 → (𝐵 < 𝐴𝐶 < 𝐵))
2316, 22jaod 395 . . 3 (𝜑 → ((𝐶 < 𝐵𝐵 < 𝐴) → 𝐶 < 𝐵))
2415, 23syld 47 . 2 (𝜑 → (𝐶 < 𝐴𝐶 < 𝐵))
2513swopolem 5034 . . . 4 ((𝜑 ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → (𝐶 < 𝐵 → (𝐶 < 𝐴𝐴 < 𝐵)))
261, 2, 12, 11, 25syl13anc 1326 . . 3 (𝜑 → (𝐶 < 𝐵 → (𝐶 < 𝐴𝐴 < 𝐵)))
27 idd 24 . . . 4 (𝜑 → (𝐶 < 𝐴𝐶 < 𝐴))
28 orc 400 . . . . . 6 (𝐴 < 𝐵 → (𝐴 < 𝐵𝐵 < 𝐴))
2919, 28nsyl 135 . . . . 5 (𝜑 → ¬ 𝐴 < 𝐵)
3029pm2.21d 118 . . . 4 (𝜑 → (𝐴 < 𝐵𝐶 < 𝐴))
3127, 30jaod 395 . . 3 (𝜑 → ((𝐶 < 𝐴𝐴 < 𝐵) → 𝐶 < 𝐴))
3226, 31syld 47 . 2 (𝜑 → (𝐶 < 𝐵𝐶 < 𝐴))
3324, 32impbid 202 1 (𝜑 → (𝐶 < 𝐴𝐶 < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1481  wcel 1988  cdif 3564  cun 3565  cop 4174   class class class wbr 4644   × cxp 5102  ccnv 5103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pr 4897
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-br 4645  df-opab 4704  df-xp 5110  df-cnv 5112
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator