MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrub Structured version   Visualization version   GIF version

Theorem supxrub 12367
Description: A member of a set of extended reals is less than or equal to the set's supremum. (Contributed by NM, 7-Feb-2006.)
Assertion
Ref Expression
supxrub ((𝐴 ⊆ ℝ*𝐵𝐴) → 𝐵 ≤ sup(𝐴, ℝ*, < ))

Proof of Theorem supxrub
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 12187 . . . . 5 < Or ℝ*
21a1i 11 . . . 4 (𝐴 ⊆ ℝ* → < Or ℝ*)
3 xrsupss 12352 . . . 4 (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
42, 3supub 8532 . . 3 (𝐴 ⊆ ℝ* → (𝐵𝐴 → ¬ sup(𝐴, ℝ*, < ) < 𝐵))
54imp 444 . 2 ((𝐴 ⊆ ℝ*𝐵𝐴) → ¬ sup(𝐴, ℝ*, < ) < 𝐵)
6 ssel2 3739 . . 3 ((𝐴 ⊆ ℝ*𝐵𝐴) → 𝐵 ∈ ℝ*)
7 supxrcl 12358 . . . 4 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
87adantr 472 . . 3 ((𝐴 ⊆ ℝ*𝐵𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
9 xrlenlt 10315 . . 3 ((𝐵 ∈ ℝ* ∧ sup(𝐴, ℝ*, < ) ∈ ℝ*) → (𝐵 ≤ sup(𝐴, ℝ*, < ) ↔ ¬ sup(𝐴, ℝ*, < ) < 𝐵))
106, 8, 9syl2anc 696 . 2 ((𝐴 ⊆ ℝ*𝐵𝐴) → (𝐵 ≤ sup(𝐴, ℝ*, < ) ↔ ¬ sup(𝐴, ℝ*, < ) < 𝐵))
115, 10mpbird 247 1 ((𝐴 ⊆ ℝ*𝐵𝐴) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  wcel 2139  wss 3715   class class class wbr 4804   Or wor 5186  supcsup 8513  *cxr 10285   < clt 10286  cle 10287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-sup 8515  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481
This theorem is referenced by:  supxrre  12370  supxrss  12375  ixxub  12409  prdsdsf  22393  prdsxmetlem  22394  xpsdsval  22407  prdsbl  22517  xrge0tsms  22858  bndth  22978  ovolmge0  23465  ovollb2lem  23476  ovolunlem1a  23484  ovoliunlem1  23490  ovoliun  23493  ovolicc2lem4  23508  ioombl1lem2  23547  ioombl1lem4  23549  uniioombllem2  23571  uniioombllem3  23573  uniioombllem6  23576  vitalilem4  23599  itg2ub  23719  itg2seq  23728  itg2monolem1  23736  itg2monolem2  23737  itg2monolem3  23738  aannenlem2  24303  radcnvcl  24390  radcnvle  24393  nmooge0  27952  nmoolb  27956  nmlno0lem  27978  nmoplb  29096  nmfnlb  29113  nmlnop0iALT  29184  xrofsup  29863  xrge0tsmsd  30115  itg2addnc  33795  rrnequiv  33965  supxrubd  39814  supxrgere  40065  supxrgelem  40069  suplesup2  40108  ressiocsup  40302  ressioosup  40303  liminfval2  40521  etransclem48  41020  fsumlesge0  41115  sge0cl  41119  sge0supre  41127  sge0xaddlem1  41171  sge0xaddlem2  41172
  Copyright terms: Public domain W3C validator