Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrgelem Structured version   Visualization version   GIF version

Theorem supxrgelem 39866
Description: If an extended real number can be approximated from below by members of a set, then it is smaller or equal to the supremum of the set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
supxrgelem.xph 𝑥𝜑
supxrgelem.a (𝜑𝐴 ⊆ ℝ*)
supxrgelem.b (𝜑𝐵 ∈ ℝ*)
supxrgelem.y ((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑥))
Assertion
Ref Expression
supxrgelem (𝜑𝐵 ≤ sup(𝐴, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem supxrgelem
StepHypRef Expression
1 supxrgelem.b . . . . 5 (𝜑𝐵 ∈ ℝ*)
2 pnfge 12002 . . . . 5 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
31, 2syl 17 . . . 4 (𝜑𝐵 ≤ +∞)
43adantr 480 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝐵 ≤ +∞)
5 id 22 . . . . 5 (sup(𝐴, ℝ*, < ) = +∞ → sup(𝐴, ℝ*, < ) = +∞)
65eqcomd 2657 . . . 4 (sup(𝐴, ℝ*, < ) = +∞ → +∞ = sup(𝐴, ℝ*, < ))
76adantl 481 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → +∞ = sup(𝐴, ℝ*, < ))
84, 7breqtrd 4711 . 2 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
9 simpl 472 . . 3 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → 𝜑)
10 1rp 11874 . . . . . . . 8 1 ∈ ℝ+
11 nfcv 2793 . . . . . . . . . 10 𝑥1
12 supxrgelem.xph . . . . . . . . . . . 12 𝑥𝜑
13 nfv 1883 . . . . . . . . . . . 12 𝑥1 ∈ ℝ+
1412, 13nfan 1868 . . . . . . . . . . 11 𝑥(𝜑 ∧ 1 ∈ ℝ+)
15 nfv 1883 . . . . . . . . . . 11 𝑥𝑦𝐴 𝐵 < (𝑦 +𝑒 1)
1614, 15nfim 1865 . . . . . . . . . 10 𝑥((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1))
17 eleq1 2718 . . . . . . . . . . . 12 (𝑥 = 1 → (𝑥 ∈ ℝ+ ↔ 1 ∈ ℝ+))
1817anbi2d 740 . . . . . . . . . . 11 (𝑥 = 1 → ((𝜑𝑥 ∈ ℝ+) ↔ (𝜑 ∧ 1 ∈ ℝ+)))
19 oveq2 6698 . . . . . . . . . . . . 13 (𝑥 = 1 → (𝑦 +𝑒 𝑥) = (𝑦 +𝑒 1))
2019breq2d 4697 . . . . . . . . . . . 12 (𝑥 = 1 → (𝐵 < (𝑦 +𝑒 𝑥) ↔ 𝐵 < (𝑦 +𝑒 1)))
2120rexbidv 3081 . . . . . . . . . . 11 (𝑥 = 1 → (∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑥) ↔ ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1)))
2218, 21imbi12d 333 . . . . . . . . . 10 (𝑥 = 1 → (((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑥)) ↔ ((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1))))
23 supxrgelem.y . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑥))
2411, 16, 22, 23vtoclgf 3295 . . . . . . . . 9 (1 ∈ ℝ+ → ((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1)))
2510, 24ax-mp 5 . . . . . . . 8 ((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1))
2610, 25mpan2 707 . . . . . . 7 (𝜑 → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1))
2726adantr 480 . . . . . 6 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1))
28 mnfxr 10134 . . . . . . . . . . 11 -∞ ∈ ℝ*
2928a1i 11 . . . . . . . . . 10 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → -∞ ∈ ℝ*)
30 supxrgelem.a . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℝ*)
3130sselda 3636 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑦 ∈ ℝ*)
32313adant3 1101 . . . . . . . . . 10 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → 𝑦 ∈ ℝ*)
33 supxrcl 12183 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
3430, 33syl 17 . . . . . . . . . . 11 (𝜑 → sup(𝐴, ℝ*, < ) ∈ ℝ*)
35343ad2ant1 1102 . . . . . . . . . 10 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
36 simpl3 1086 . . . . . . . . . . . 12 (((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) ∧ ¬ -∞ < 𝑦) → 𝐵 < (𝑦 +𝑒 1))
37 simpr 476 . . . . . . . . . . . . . . . 16 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → ¬ -∞ < 𝑦)
3831adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 𝑦 ∈ ℝ*)
39 ngtmnft 12035 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ* → (𝑦 = -∞ ↔ ¬ -∞ < 𝑦))
4038, 39syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 = -∞ ↔ ¬ -∞ < 𝑦))
4137, 40mpbird 247 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 𝑦 = -∞)
4241oveq1d 6705 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 1) = (-∞ +𝑒 1))
43 1re 10077 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
4443rexri 10135 . . . . . . . . . . . . . . . 16 1 ∈ ℝ*
4544a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 1 ∈ ℝ*)
46 renepnf 10125 . . . . . . . . . . . . . . . . 17 (1 ∈ ℝ → 1 ≠ +∞)
4743, 46ax-mp 5 . . . . . . . . . . . . . . . 16 1 ≠ +∞
4847a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 1 ≠ +∞)
49 xaddmnf2 12098 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ* ∧ 1 ≠ +∞) → (-∞ +𝑒 1) = -∞)
5045, 48, 49syl2anc 694 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (-∞ +𝑒 1) = -∞)
5142, 50eqtrd 2685 . . . . . . . . . . . . 13 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 1) = -∞)
52513adantl3 1239 . . . . . . . . . . . 12 (((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 1) = -∞)
5336, 52breqtrd 4711 . . . . . . . . . . 11 (((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) ∧ ¬ -∞ < 𝑦) → 𝐵 < -∞)
54 nltmnf 12001 . . . . . . . . . . . . . 14 (𝐵 ∈ ℝ* → ¬ 𝐵 < -∞)
551, 54syl 17 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝐵 < -∞)
5655adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ -∞ < 𝑦) → ¬ 𝐵 < -∞)
57563ad2antl1 1243 . . . . . . . . . . 11 (((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) ∧ ¬ -∞ < 𝑦) → ¬ 𝐵 < -∞)
5853, 57condan 852 . . . . . . . . . 10 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → -∞ < 𝑦)
5930adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝐴 ⊆ ℝ*)
60 simpr 476 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝑦𝐴)
61 supxrub 12192 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ≤ sup(𝐴, ℝ*, < ))
6259, 60, 61syl2anc 694 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑦 ≤ sup(𝐴, ℝ*, < ))
63623adant3 1101 . . . . . . . . . 10 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → 𝑦 ≤ sup(𝐴, ℝ*, < ))
6429, 32, 35, 58, 63xrltletrd 12030 . . . . . . . . 9 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → -∞ < sup(𝐴, ℝ*, < ))
65643exp 1283 . . . . . . . 8 (𝜑 → (𝑦𝐴 → (𝐵 < (𝑦 +𝑒 1) → -∞ < sup(𝐴, ℝ*, < ))))
6665adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (𝑦𝐴 → (𝐵 < (𝑦 +𝑒 1) → -∞ < sup(𝐴, ℝ*, < ))))
6766rexlimdv 3059 . . . . . 6 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1) → -∞ < sup(𝐴, ℝ*, < )))
6827, 67mpd 15 . . . . 5 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → -∞ < sup(𝐴, ℝ*, < ))
69 simpr 476 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ¬ sup(𝐴, ℝ*, < ) = +∞)
70 nltpnft 12033 . . . . . . . . 9 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
7134, 70syl 17 . . . . . . . 8 (𝜑 → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
7271adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
7369, 72mtbid 313 . . . . . 6 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ¬ ¬ sup(𝐴, ℝ*, < ) < +∞)
7473notnotrd 128 . . . . 5 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) < +∞)
7568, 74jca 553 . . . 4 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞))
7634adantr 480 . . . . 5 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
77 xrrebnd 12037 . . . . 5 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞)))
7876, 77syl 17 . . . 4 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞)))
7975, 78mpbird 247 . . 3 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ)
80 simpl 472 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → (𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ))
81 simpr 476 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → ¬ 𝐵 ≤ sup(𝐴, ℝ*, < ))
8234adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
831adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → 𝐵 ∈ ℝ*)
84 xrltnle 10143 . . . . . . . 8 ((sup(𝐴, ℝ*, < ) ∈ ℝ*𝐵 ∈ ℝ*) → (sup(𝐴, ℝ*, < ) < 𝐵 ↔ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )))
8582, 83, 84syl2anc 694 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → (sup(𝐴, ℝ*, < ) < 𝐵 ↔ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )))
8685adantlr 751 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → (sup(𝐴, ℝ*, < ) < 𝐵 ↔ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )))
8781, 86mpbird 247 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → sup(𝐴, ℝ*, < ) < 𝐵)
88 simpll 805 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝜑)
8928a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → -∞ ∈ ℝ*)
9088, 34syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
9188, 1syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝐵 ∈ ℝ*)
92 mnfle 12007 . . . . . . . . . . . . . 14 (sup(𝐴, ℝ*, < ) ∈ ℝ* → -∞ ≤ sup(𝐴, ℝ*, < ))
9334, 92syl 17 . . . . . . . . . . . . 13 (𝜑 → -∞ ≤ sup(𝐴, ℝ*, < ))
9493ad2antrr 762 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → -∞ ≤ sup(𝐴, ℝ*, < ))
95 simpr 476 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → sup(𝐴, ℝ*, < ) < 𝐵)
9689, 90, 91, 94, 95xrlelttrd 12029 . . . . . . . . . . 11 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → -∞ < 𝐵)
97 id 22 . . . . . . . . . . . . . 14 (𝜑𝜑)
9810a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ+)
9997, 98, 25syl2anc 694 . . . . . . . . . . . . 13 (𝜑 → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1))
10099ad2antrr 762 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1))
10113ad2ant1 1102 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → 𝐵 ∈ ℝ*)
10244a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → 1 ∈ ℝ*)
10332, 102jca 553 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → (𝑦 ∈ ℝ* ∧ 1 ∈ ℝ*))
104 xaddcl 12108 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑦 +𝑒 1) ∈ ℝ*)
105103, 104syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → (𝑦 +𝑒 1) ∈ ℝ*)
106 pnfxr 10130 . . . . . . . . . . . . . . . . 17 +∞ ∈ ℝ*
107106a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → +∞ ∈ ℝ*)
108 simp3 1083 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → 𝐵 < (𝑦 +𝑒 1))
10931, 44, 104sylancl 695 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝐴) → (𝑦 +𝑒 1) ∈ ℝ*)
110 pnfge 12002 . . . . . . . . . . . . . . . . . 18 ((𝑦 +𝑒 1) ∈ ℝ* → (𝑦 +𝑒 1) ≤ +∞)
111109, 110syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝐴) → (𝑦 +𝑒 1) ≤ +∞)
1121113adant3 1101 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → (𝑦 +𝑒 1) ≤ +∞)
113101, 105, 107, 108, 112xrltletrd 12030 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → 𝐵 < +∞)
1141133exp 1283 . . . . . . . . . . . . . 14 (𝜑 → (𝑦𝐴 → (𝐵 < (𝑦 +𝑒 1) → 𝐵 < +∞)))
115114rexlimdv 3059 . . . . . . . . . . . . 13 (𝜑 → (∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1) → 𝐵 < +∞))
11688, 115syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1) → 𝐵 < +∞))
117100, 116mpd 15 . . . . . . . . . . 11 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝐵 < +∞)
11896, 117jca 553 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (-∞ < 𝐵𝐵 < +∞))
119 xrrebnd 12037 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵𝐵 < +∞)))
12091, 119syl 17 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵𝐵 < +∞)))
121118, 120mpbird 247 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝐵 ∈ ℝ)
122 simpr 476 . . . . . . . . . 10 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → sup(𝐴, ℝ*, < ) ∈ ℝ)
123122adantr 480 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → sup(𝐴, ℝ*, < ) ∈ ℝ)
124121, 123resubcld 10496 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ)
12526, 115mpd 15 . . . . . . . . . . . . 13 (𝜑𝐵 < +∞)
126125ad2antrr 762 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝐵 < +∞)
12796, 126jca 553 . . . . . . . . . . 11 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (-∞ < 𝐵𝐵 < +∞))
128127, 120mpbird 247 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝐵 ∈ ℝ)
129123, 128posdifd 10652 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (sup(𝐴, ℝ*, < ) < 𝐵 ↔ 0 < (𝐵 − sup(𝐴, ℝ*, < ))))
13095, 129mpbid 222 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 0 < (𝐵 − sup(𝐴, ℝ*, < )))
131124, 130elrpd 11907 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+)
132 ovex 6718 . . . . . . . 8 (𝐵 − sup(𝐴, ℝ*, < )) ∈ V
133 nfcv 2793 . . . . . . . . 9 𝑥(𝐵 − sup(𝐴, ℝ*, < ))
134 nfv 1883 . . . . . . . . . . 11 𝑥(𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+
13512, 134nfan 1868 . . . . . . . . . 10 𝑥(𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+)
136 nfv 1883 . . . . . . . . . 10 𝑥𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))
137135, 136nfim 1865 . . . . . . . . 9 𝑥((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
138 eleq1 2718 . . . . . . . . . . 11 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (𝑥 ∈ ℝ+ ↔ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+))
139138anbi2d 740 . . . . . . . . . 10 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → ((𝜑𝑥 ∈ ℝ+) ↔ (𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+)))
140 oveq2 6698 . . . . . . . . . . . 12 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (𝑦 +𝑒 𝑥) = (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
141140breq2d 4697 . . . . . . . . . . 11 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (𝐵 < (𝑦 +𝑒 𝑥) ↔ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))))
142141rexbidv 3081 . . . . . . . . . 10 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑥) ↔ ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))))
143139, 142imbi12d 333 . . . . . . . . 9 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑥)) ↔ ((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))))
144133, 137, 143, 23vtoclgf 3295 . . . . . . . 8 ((𝐵 − sup(𝐴, ℝ*, < )) ∈ V → ((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))))
145132, 144ax-mp 5 . . . . . . 7 ((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
14688, 131, 145syl2anc 694 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
147 ltpnf 11992 . . . . . . . . . . . . 13 (sup(𝐴, ℝ*, < ) ∈ ℝ → sup(𝐴, ℝ*, < ) < +∞)
148147adantr 480 . . . . . . . . . . . 12 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑦 = +∞) → sup(𝐴, ℝ*, < ) < +∞)
149 id 22 . . . . . . . . . . . . . 14 (𝑦 = +∞ → 𝑦 = +∞)
150149eqcomd 2657 . . . . . . . . . . . . 13 (𝑦 = +∞ → +∞ = 𝑦)
151150adantl 481 . . . . . . . . . . . 12 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑦 = +∞) → +∞ = 𝑦)
152148, 151breqtrd 4711 . . . . . . . . . . 11 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑦 = +∞) → sup(𝐴, ℝ*, < ) < 𝑦)
153152adantll 750 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑦 = +∞) → sup(𝐴, ℝ*, < ) < 𝑦)
154153ad5ant15 1336 . . . . . . . . 9 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = +∞) → sup(𝐴, ℝ*, < ) < 𝑦)
155 simplll 813 . . . . . . . . . 10 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵))
156 simpl 472 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ -∞ < 𝑦) → ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))))
15788, 41sylanl1 683 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 𝑦 = -∞)
158157adantlr 751 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ -∞ < 𝑦) → 𝑦 = -∞)
159 simplr 807 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = -∞) → 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
160 oveq1 6697 . . . . . . . . . . . . . . . . . 18 (𝑦 = -∞ → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = (-∞ +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
161160adantl 481 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = -∞) → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = (-∞ +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
162128, 123resubcld 10496 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ)
163162rexrd 10127 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ*)
164163ad3antrrr 766 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = -∞) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ*)
165 renepnf 10125 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ → (𝐵 − sup(𝐴, ℝ*, < )) ≠ +∞)
166124, 165syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ≠ +∞)
167166ad3antrrr 766 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = -∞) → (𝐵 − sup(𝐴, ℝ*, < )) ≠ +∞)
168 xaddmnf2 12098 . . . . . . . . . . . . . . . . . 18 (((𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ* ∧ (𝐵 − sup(𝐴, ℝ*, < )) ≠ +∞) → (-∞ +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = -∞)
169164, 167, 168syl2anc 694 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = -∞) → (-∞ +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = -∞)
170161, 169eqtrd 2685 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = -∞) → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = -∞)
171159, 170breqtrd 4711 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = -∞) → 𝐵 < -∞)
172156, 158, 171syl2anc 694 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ -∞ < 𝑦) → 𝐵 < -∞)
17355ad5antr 773 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ -∞ < 𝑦) → ¬ 𝐵 < -∞)
174172, 173condan 852 . . . . . . . . . . . . 13 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → -∞ < 𝑦)
175174adantr 480 . . . . . . . . . . . 12 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → -∞ < 𝑦)
176 simp3 1083 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴 ∧ ¬ 𝑦 = +∞) → ¬ 𝑦 = +∞)
177313adant3 1101 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝐴 ∧ ¬ 𝑦 = +∞) → 𝑦 ∈ ℝ*)
178 nltpnft 12033 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ* → (𝑦 = +∞ ↔ ¬ 𝑦 < +∞))
179177, 178syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴 ∧ ¬ 𝑦 = +∞) → (𝑦 = +∞ ↔ ¬ 𝑦 < +∞))
180176, 179mtbid 313 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐴 ∧ ¬ 𝑦 = +∞) → ¬ ¬ 𝑦 < +∞)
181180notnotrd 128 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐴 ∧ ¬ 𝑦 = +∞) → 𝑦 < +∞)
1821813adant1r 1359 . . . . . . . . . . . . 13 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑦𝐴 ∧ ¬ 𝑦 = +∞) → 𝑦 < +∞)
183182ad5ant135 1354 . . . . . . . . . . . 12 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → 𝑦 < +∞)
184175, 183jca 553 . . . . . . . . . . 11 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → (-∞ < 𝑦𝑦 < +∞))
18531adantlr 751 . . . . . . . . . . . . 13 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ*)
186185ad5ant13 1332 . . . . . . . . . . . 12 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → 𝑦 ∈ ℝ*)
187 xrrebnd 12037 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (𝑦 ∈ ℝ ↔ (-∞ < 𝑦𝑦 < +∞)))
188186, 187syl 17 . . . . . . . . . . 11 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → (𝑦 ∈ ℝ ↔ (-∞ < 𝑦𝑦 < +∞)))
189184, 188mpbird 247 . . . . . . . . . 10 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → 𝑦 ∈ ℝ)
190 simplr 807 . . . . . . . . . 10 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
191121ad2antrr 762 . . . . . . . . . . . . 13 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → 𝐵 ∈ ℝ)
192 simpr 476 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
193124adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ)
194 rexadd 12101 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ) → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = (𝑦 + (𝐵 − sup(𝐴, ℝ*, < ))))
195192, 193, 194syl2anc 694 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = (𝑦 + (𝐵 − sup(𝐴, ℝ*, < ))))
196192, 193readdcld 10107 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑦 + (𝐵 − sup(𝐴, ℝ*, < ))) ∈ ℝ)
197195, 196eqeltrd 2730 . . . . . . . . . . . . . 14 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) ∈ ℝ)
198197adantr 480 . . . . . . . . . . . . 13 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) ∈ ℝ)
199 simpr 476 . . . . . . . . . . . . 13 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
200191, 198, 191, 199ltsub1dd 10677 . . . . . . . . . . . 12 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → (𝐵𝐵) < ((𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) − 𝐵))
201121recnd 10106 . . . . . . . . . . . . . . 15 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝐵 ∈ ℂ)
202201subidd 10418 . . . . . . . . . . . . . 14 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵𝐵) = 0)
203202ad2antrr 762 . . . . . . . . . . . . 13 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → (𝐵𝐵) = 0)
204192recnd 10106 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
205201adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → 𝐵 ∈ ℂ)
206122recnd 10106 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → sup(𝐴, ℝ*, < ) ∈ ℂ)
207206ad2antrr 762 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → sup(𝐴, ℝ*, < ) ∈ ℂ)
208204, 205, 207addsub12d 10453 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑦 + (𝐵 − sup(𝐴, ℝ*, < ))) = (𝐵 + (𝑦 − sup(𝐴, ℝ*, < ))))
209195, 208eqtrd 2685 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = (𝐵 + (𝑦 − sup(𝐴, ℝ*, < ))))
210209oveq1d 6705 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → ((𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) − 𝐵) = ((𝐵 + (𝑦 − sup(𝐴, ℝ*, < ))) − 𝐵))
211204, 207subcld 10430 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑦 − sup(𝐴, ℝ*, < )) ∈ ℂ)
212205, 211pncan2d 10432 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → ((𝐵 + (𝑦 − sup(𝐴, ℝ*, < ))) − 𝐵) = (𝑦 − sup(𝐴, ℝ*, < )))
213210, 212eqtrd 2685 . . . . . . . . . . . . . 14 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → ((𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) − 𝐵) = (𝑦 − sup(𝐴, ℝ*, < )))
214213adantr 480 . . . . . . . . . . . . 13 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → ((𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) − 𝐵) = (𝑦 − sup(𝐴, ℝ*, < )))
215203, 214breq12d 4698 . . . . . . . . . . . 12 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → ((𝐵𝐵) < ((𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) − 𝐵) ↔ 0 < (𝑦 − sup(𝐴, ℝ*, < ))))
216200, 215mpbid 222 . . . . . . . . . . 11 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → 0 < (𝑦 − sup(𝐴, ℝ*, < )))
217123ad2antrr 762 . . . . . . . . . . . 12 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → sup(𝐴, ℝ*, < ) ∈ ℝ)
218 simplr 807 . . . . . . . . . . . 12 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → 𝑦 ∈ ℝ)
219217, 218posdifd 10652 . . . . . . . . . . 11 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → (sup(𝐴, ℝ*, < ) < 𝑦 ↔ 0 < (𝑦 − sup(𝐴, ℝ*, < ))))
220216, 219mpbird 247 . . . . . . . . . 10 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → sup(𝐴, ℝ*, < ) < 𝑦)
221155, 189, 190, 220syl21anc 1365 . . . . . . . . 9 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → sup(𝐴, ℝ*, < ) < 𝑦)
222154, 221pm2.61dan 849 . . . . . . . 8 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → sup(𝐴, ℝ*, < ) < 𝑦)
223222ex 449 . . . . . . 7 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) → (𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) → sup(𝐴, ℝ*, < ) < 𝑦))
224223reximdva 3046 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (∃𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) → ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦))
225146, 224mpd 15 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
22680, 87, 225syl2anc 694 . . . 4 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
22759, 33syl 17 . . . . . . . . 9 ((𝜑𝑦𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
22831, 227xrlenltd 10142 . . . . . . . 8 ((𝜑𝑦𝐴) → (𝑦 ≤ sup(𝐴, ℝ*, < ) ↔ ¬ sup(𝐴, ℝ*, < ) < 𝑦))
22962, 228mpbid 222 . . . . . . 7 ((𝜑𝑦𝐴) → ¬ sup(𝐴, ℝ*, < ) < 𝑦)
230229ralrimiva 2995 . . . . . 6 (𝜑 → ∀𝑦𝐴 ¬ sup(𝐴, ℝ*, < ) < 𝑦)
231 ralnex 3021 . . . . . 6 (∀𝑦𝐴 ¬ sup(𝐴, ℝ*, < ) < 𝑦 ↔ ¬ ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
232230, 231sylib 208 . . . . 5 (𝜑 → ¬ ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
233232ad2antrr 762 . . . 4 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → ¬ ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
234226, 233condan 852 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
2359, 79, 234syl2anc 694 . 2 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
2368, 235pm2.61dan 849 1 (𝜑𝐵 ≤ sup(𝐴, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wnf 1748  wcel 2030  wne 2823  wral 2941  wrex 2942  Vcvv 3231  wss 3607   class class class wbr 4685  (class class class)co 6690  supcsup 8387  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977  +∞cpnf 10109  -∞cmnf 10110  *cxr 10111   < clt 10112  cle 10113  cmin 10304  +crp 11870   +𝑒 cxad 11982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-rp 11871  df-xadd 11985
This theorem is referenced by:  supxrge  39867
  Copyright terms: Public domain W3C validator