Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrge Structured version   Visualization version   GIF version

Theorem supxrge 39867
Description: If an extended real number can be approximated from below by members of a set, then it is smaller or equal to the supremum of the set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
supxrge.xph 𝑥𝜑
supxrge.a (𝜑𝐴 ⊆ ℝ*)
supxrge.b (𝜑𝐵 ∈ ℝ*)
supxrge.y ((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 𝑥))
Assertion
Ref Expression
supxrge (𝜑𝐵 ≤ sup(𝐴, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem supxrge
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 supxrge.b . . . . 5 (𝜑𝐵 ∈ ℝ*)
2 pnfge 12002 . . . . 5 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
31, 2syl 17 . . . 4 (𝜑𝐵 ≤ +∞)
43adantr 480 . . 3 ((𝜑 ∧ +∞ ∈ 𝐴) → 𝐵 ≤ +∞)
5 supxrge.a . . . . . 6 (𝜑𝐴 ⊆ ℝ*)
65adantr 480 . . . . 5 ((𝜑 ∧ +∞ ∈ 𝐴) → 𝐴 ⊆ ℝ*)
7 simpr 476 . . . . 5 ((𝜑 ∧ +∞ ∈ 𝐴) → +∞ ∈ 𝐴)
8 supxrpnf 12186 . . . . 5 ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = +∞)
96, 7, 8syl2anc 694 . . . 4 ((𝜑 ∧ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = +∞)
109eqcomd 2657 . . 3 ((𝜑 ∧ +∞ ∈ 𝐴) → +∞ = sup(𝐴, ℝ*, < ))
114, 10breqtrd 4711 . 2 ((𝜑 ∧ +∞ ∈ 𝐴) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
12 simpr 476 . . . . 5 ((𝜑𝐵 = -∞) → 𝐵 = -∞)
13 supxrcl 12183 . . . . . . . 8 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
145, 13syl 17 . . . . . . 7 (𝜑 → sup(𝐴, ℝ*, < ) ∈ ℝ*)
15 mnfle 12007 . . . . . . 7 (sup(𝐴, ℝ*, < ) ∈ ℝ* → -∞ ≤ sup(𝐴, ℝ*, < ))
1614, 15syl 17 . . . . . 6 (𝜑 → -∞ ≤ sup(𝐴, ℝ*, < ))
1716adantr 480 . . . . 5 ((𝜑𝐵 = -∞) → -∞ ≤ sup(𝐴, ℝ*, < ))
1812, 17eqbrtrd 4707 . . . 4 ((𝜑𝐵 = -∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
1918adantlr 751 . . 3 (((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 = -∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
20 simpl 472 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ ¬ 𝐵 = -∞) → (𝜑 ∧ ¬ +∞ ∈ 𝐴))
21 neqne 2831 . . . . 5 𝐵 = -∞ → 𝐵 ≠ -∞)
2221adantl 481 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ ¬ 𝐵 = -∞) → 𝐵 ≠ -∞)
23 nfv 1883 . . . . 5 𝑤((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞)
245adantr 480 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → 𝐴 ⊆ ℝ*)
2524adantr 480 . . . . 5 (((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) → 𝐴 ⊆ ℝ*)
261adantr 480 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → 𝐵 ∈ ℝ*)
2726adantr 480 . . . . 5 (((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) → 𝐵 ∈ ℝ*)
28 simpl 472 . . . . . . . . 9 ((𝜑𝑤 ∈ ℝ+) → 𝜑)
29 rphalfcl 11896 . . . . . . . . . 10 (𝑤 ∈ ℝ+ → (𝑤 / 2) ∈ ℝ+)
3029adantl 481 . . . . . . . . 9 ((𝜑𝑤 ∈ ℝ+) → (𝑤 / 2) ∈ ℝ+)
31 ovex 6718 . . . . . . . . . 10 (𝑤 / 2) ∈ V
32 nfcv 2793 . . . . . . . . . . 11 𝑥(𝑤 / 2)
33 supxrge.xph . . . . . . . . . . . . 13 𝑥𝜑
34 nfv 1883 . . . . . . . . . . . . 13 𝑥(𝑤 / 2) ∈ ℝ+
3533, 34nfan 1868 . . . . . . . . . . . 12 𝑥(𝜑 ∧ (𝑤 / 2) ∈ ℝ+)
36 nfv 1883 . . . . . . . . . . . 12 𝑥𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))
3735, 36nfim 1865 . . . . . . . . . . 11 𝑥((𝜑 ∧ (𝑤 / 2) ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)))
38 eleq1 2718 . . . . . . . . . . . . 13 (𝑥 = (𝑤 / 2) → (𝑥 ∈ ℝ+ ↔ (𝑤 / 2) ∈ ℝ+))
3938anbi2d 740 . . . . . . . . . . . 12 (𝑥 = (𝑤 / 2) → ((𝜑𝑥 ∈ ℝ+) ↔ (𝜑 ∧ (𝑤 / 2) ∈ ℝ+)))
40 oveq2 6698 . . . . . . . . . . . . . 14 (𝑥 = (𝑤 / 2) → (𝑦 +𝑒 𝑥) = (𝑦 +𝑒 (𝑤 / 2)))
4140breq2d 4697 . . . . . . . . . . . . 13 (𝑥 = (𝑤 / 2) → (𝐵 ≤ (𝑦 +𝑒 𝑥) ↔ 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))))
4241rexbidv 3081 . . . . . . . . . . . 12 (𝑥 = (𝑤 / 2) → (∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 𝑥) ↔ ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))))
4339, 42imbi12d 333 . . . . . . . . . . 11 (𝑥 = (𝑤 / 2) → (((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 𝑥)) ↔ ((𝜑 ∧ (𝑤 / 2) ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)))))
44 supxrge.y . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 𝑥))
4532, 37, 43, 44vtoclgf 3295 . . . . . . . . . 10 ((𝑤 / 2) ∈ V → ((𝜑 ∧ (𝑤 / 2) ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))))
4631, 45ax-mp 5 . . . . . . . . 9 ((𝜑 ∧ (𝑤 / 2) ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)))
4728, 30, 46syl2anc 694 . . . . . . . 8 ((𝜑𝑤 ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)))
4847adantlr 751 . . . . . . 7 (((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝑤 ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)))
4948adantlr 751 . . . . . 6 ((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) → ∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)))
50 nfv 1883 . . . . . . 7 𝑦(((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+)
51 neneq 2829 . . . . . . . . . . . . . . . 16 (𝐵 ≠ -∞ → ¬ 𝐵 = -∞)
5251adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝐵 ≠ -∞) → ¬ 𝐵 = -∞)
531adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐵 ≠ -∞) → 𝐵 ∈ ℝ*)
54 ngtmnft 12035 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ* → (𝐵 = -∞ ↔ ¬ -∞ < 𝐵))
5553, 54syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝐵 ≠ -∞) → (𝐵 = -∞ ↔ ¬ -∞ < 𝐵))
5652, 55mtbid 313 . . . . . . . . . . . . . 14 ((𝜑𝐵 ≠ -∞) → ¬ ¬ -∞ < 𝐵)
5756notnotrd 128 . . . . . . . . . . . . 13 ((𝜑𝐵 ≠ -∞) → -∞ < 𝐵)
5857ad4ant13 1315 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) → -∞ < 𝐵)
59583ad2ant1 1102 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → -∞ < 𝐵)
6027adantr 480 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) → 𝐵 ∈ ℝ*)
61603ad2ant1 1102 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → 𝐵 ∈ ℝ*)
6261adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) ∧ ¬ -∞ < 𝑦) → 𝐵 ∈ ℝ*)
63 mnfxr 10134 . . . . . . . . . . . . . . . . . . . 20 -∞ ∈ ℝ*
6463a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) ∧ ¬ -∞ < 𝑦) → -∞ ∈ ℝ*)
65 simpl3 1086 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) ∧ ¬ -∞ < 𝑦) → 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)))
66 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → ¬ -∞ < 𝑦)
675sselda 3636 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑦𝐴) → 𝑦 ∈ ℝ*)
6867adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 𝑦 ∈ ℝ*)
69 ngtmnft 12035 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ℝ* → (𝑦 = -∞ ↔ ¬ -∞ < 𝑦))
7068, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 = -∞ ↔ ¬ -∞ < 𝑦))
7166, 70mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 𝑦 = -∞)
7271oveq1d 6705 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 (𝑤 / 2)) = (-∞ +𝑒 (𝑤 / 2)))
7372adantllr 755 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 (𝑤 / 2)) = (-∞ +𝑒 (𝑤 / 2)))
7429rpxrd 11911 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ ℝ+ → (𝑤 / 2) ∈ ℝ*)
7529rpred 11910 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 ∈ ℝ+ → (𝑤 / 2) ∈ ℝ)
76 renepnf 10125 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑤 / 2) ∈ ℝ → (𝑤 / 2) ≠ +∞)
7775, 76syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ ℝ+ → (𝑤 / 2) ≠ +∞)
78 xaddmnf2 12098 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑤 / 2) ∈ ℝ* ∧ (𝑤 / 2) ≠ +∞) → (-∞ +𝑒 (𝑤 / 2)) = -∞)
7974, 77, 78syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 ∈ ℝ+ → (-∞ +𝑒 (𝑤 / 2)) = -∞)
8079adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑤 ∈ ℝ+) → (-∞ +𝑒 (𝑤 / 2)) = -∞)
8180ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (-∞ +𝑒 (𝑤 / 2)) = -∞)
8273, 81eqtrd 2685 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑤 ∈ ℝ+) ∧ 𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 (𝑤 / 2)) = -∞)
8382adantl3r 801 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 (𝑤 / 2)) = -∞)
8483adantl3r 801 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 (𝑤 / 2)) = -∞)
85843adantl3 1239 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 (𝑤 / 2)) = -∞)
8665, 85breqtrd 4711 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) ∧ ¬ -∞ < 𝑦) → 𝐵 ≤ -∞)
87 mnfle 12007 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵 ∈ ℝ* → -∞ ≤ 𝐵)
881, 87syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → -∞ ≤ 𝐵)
8988adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → -∞ ≤ 𝐵)
9089ad3antrrr 766 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ ¬ -∞ < 𝑦) → -∞ ≤ 𝐵)
91903ad2antl1 1243 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) ∧ ¬ -∞ < 𝑦) → -∞ ≤ 𝐵)
9262, 64, 86, 91xrletrid 12024 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) ∧ ¬ -∞ < 𝑦) → 𝐵 = -∞)
93 simpllr 815 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ ¬ -∞ < 𝑦) → 𝐵 ≠ -∞)
94933ad2antl1 1243 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) ∧ ¬ -∞ < 𝑦) → 𝐵 ≠ -∞)
9594neneqd 2828 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) ∧ ¬ -∞ < 𝑦) → ¬ 𝐵 = -∞)
9692, 95condan 852 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → -∞ < 𝑦)
97 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦𝐴) ∧ ¬ 𝑦 < +∞) → ¬ 𝑦 < +∞)
9867adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑦𝐴) ∧ ¬ 𝑦 < +∞) → 𝑦 ∈ ℝ*)
99 nltpnft 12033 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℝ* → (𝑦 = +∞ ↔ ¬ 𝑦 < +∞))
10098, 99syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦𝐴) ∧ ¬ 𝑦 < +∞) → (𝑦 = +∞ ↔ ¬ 𝑦 < +∞))
10197, 100mpbird 247 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦𝐴) ∧ ¬ 𝑦 < +∞) → 𝑦 = +∞)
102101eqcomd 2657 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦𝐴) ∧ ¬ 𝑦 < +∞) → +∞ = 𝑦)
103 simpr 476 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦𝐴) → 𝑦𝐴)
104103adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦𝐴) ∧ ¬ 𝑦 < +∞) → 𝑦𝐴)
105102, 104eqeltrd 2730 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦𝐴) ∧ ¬ 𝑦 < +∞) → +∞ ∈ 𝐴)
1061053adantl2 1238 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ +∞ ∈ 𝐴𝑦𝐴) ∧ ¬ 𝑦 < +∞) → +∞ ∈ 𝐴)
107 simpl2 1085 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ +∞ ∈ 𝐴𝑦𝐴) ∧ ¬ 𝑦 < +∞) → ¬ +∞ ∈ 𝐴)
108106, 107condan 852 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ +∞ ∈ 𝐴𝑦𝐴) → 𝑦 < +∞)
109108ad5ant125 1352 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴) → 𝑦 < +∞)
1101093adant3 1101 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → 𝑦 < +∞)
11196, 110jca 553 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (-∞ < 𝑦𝑦 < +∞))
11267ad5ant15 1336 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ*)
1131123adant3 1101 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → 𝑦 ∈ ℝ*)
114 xrrebnd 12037 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ* → (𝑦 ∈ ℝ ↔ (-∞ < 𝑦𝑦 < +∞)))
115113, 114syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 ∈ ℝ ↔ (-∞ < 𝑦𝑦 < +∞)))
116111, 115mpbird 247 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → 𝑦 ∈ ℝ)
11775adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) → (𝑤 / 2) ∈ ℝ)
1181173ad2ant1 1102 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑤 / 2) ∈ ℝ)
119 rexadd 12101 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ (𝑤 / 2) ∈ ℝ) → (𝑦 +𝑒 (𝑤 / 2)) = (𝑦 + (𝑤 / 2)))
120116, 118, 119syl2anc 694 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 +𝑒 (𝑤 / 2)) = (𝑦 + (𝑤 / 2)))
121116, 118readdcld 10107 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 + (𝑤 / 2)) ∈ ℝ)
122120, 121eqeltrd 2730 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 +𝑒 (𝑤 / 2)) ∈ ℝ)
123122rexrd 10127 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 +𝑒 (𝑤 / 2)) ∈ ℝ*)
124 pnfxr 10130 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
125124a1i 11 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → +∞ ∈ ℝ*)
126 simp3 1083 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)))
127122ltpnfd 11993 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 +𝑒 (𝑤 / 2)) < +∞)
12861, 123, 125, 126, 127xrlelttrd 12029 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → 𝐵 < +∞)
12959, 128jca 553 . . . . . . . . . 10 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (-∞ < 𝐵𝐵 < +∞))
130 xrrebnd 12037 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵𝐵 < +∞)))
13161, 130syl 17 . . . . . . . . . 10 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵𝐵 < +∞)))
132129, 131mpbird 247 . . . . . . . . 9 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → 𝐵 ∈ ℝ)
133 rpre 11877 . . . . . . . . . . . . 13 (𝑤 ∈ ℝ+𝑤 ∈ ℝ)
134133adantl 481 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ)
1351343ad2ant1 1102 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → 𝑤 ∈ ℝ)
136 rexadd 12101 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑦 +𝑒 𝑤) = (𝑦 + 𝑤))
137116, 135, 136syl2anc 694 . . . . . . . . . 10 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 +𝑒 𝑤) = (𝑦 + 𝑤))
138116, 135readdcld 10107 . . . . . . . . . 10 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 + 𝑤) ∈ ℝ)
139137, 138eqeltrd 2730 . . . . . . . . 9 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 +𝑒 𝑤) ∈ ℝ)
140 rphalflt 11898 . . . . . . . . . . . . 13 (𝑤 ∈ ℝ+ → (𝑤 / 2) < 𝑤)
141140adantl 481 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) → (𝑤 / 2) < 𝑤)
1421413ad2ant1 1102 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑤 / 2) < 𝑤)
143118, 135, 116, 142ltadd2dd 10234 . . . . . . . . . 10 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 + (𝑤 / 2)) < (𝑦 + 𝑤))
144120, 137breq12d 4698 . . . . . . . . . 10 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → ((𝑦 +𝑒 (𝑤 / 2)) < (𝑦 +𝑒 𝑤) ↔ (𝑦 + (𝑤 / 2)) < (𝑦 + 𝑤)))
145143, 144mpbird 247 . . . . . . . . 9 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → (𝑦 +𝑒 (𝑤 / 2)) < (𝑦 +𝑒 𝑤))
146132, 122, 139, 126, 145lelttrd 10233 . . . . . . . 8 (((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) ∧ 𝑦𝐴𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2))) → 𝐵 < (𝑦 +𝑒 𝑤))
1471463exp 1283 . . . . . . 7 ((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) → (𝑦𝐴 → (𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)) → 𝐵 < (𝑦 +𝑒 𝑤))))
14850, 147reximdai 3041 . . . . . 6 ((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) → (∃𝑦𝐴 𝐵 ≤ (𝑦 +𝑒 (𝑤 / 2)) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑤)))
14949, 148mpd 15 . . . . 5 ((((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) ∧ 𝑤 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑤))
15023, 25, 27, 149supxrgelem 39866 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ 𝐵 ≠ -∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
15120, 22, 150syl2anc 694 . . 3 (((𝜑 ∧ ¬ +∞ ∈ 𝐴) ∧ ¬ 𝐵 = -∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
15219, 151pm2.61dan 849 . 2 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
15311, 152pm2.61dan 849 1 (𝜑𝐵 ≤ sup(𝐴, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wnf 1748  wcel 2030  wne 2823  wrex 2942  Vcvv 3231  wss 3607   class class class wbr 4685  (class class class)co 6690  supcsup 8387  cr 9973   + caddc 9977  +∞cpnf 10109  -∞cmnf 10110  *cxr 10111   < clt 10112  cle 10113   / cdiv 10722  2c2 11108  +crp 11870   +𝑒 cxad 11982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-2 11117  df-rp 11871  df-xadd 11985
This theorem is referenced by:  sge0gerp  40930
  Copyright terms: Public domain W3C validator