![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supxrcl | Structured version Visualization version GIF version |
Description: The supremum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 24-Oct-2005.) |
Ref | Expression |
---|---|
supxrcl | ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltso 12012 | . . 3 ⊢ < Or ℝ* | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ⊆ ℝ* → < Or ℝ*) |
3 | xrsupss 12177 | . 2 ⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | |
4 | 2, 3 | supcl 8405 | 1 ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 ⊆ wss 3607 Or wor 5063 supcsup 8387 ℝ*cxr 10111 < clt 10112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-sup 8389 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 |
This theorem is referenced by: supxrun 12184 supxrmnf 12185 supxrbnd1 12189 supxrbnd2 12190 supxrub 12192 supxrleub 12194 supxrre 12195 supxrbnd 12196 supxrgtmnf 12197 supxrre1 12198 supxrre2 12199 supxrss 12200 ixxub 12234 limsupgord 14247 limsupcl 14248 limsupgf 14250 prdsdsf 22219 xpsdsval 22233 xrge0tsms 22684 elovolm 23289 ovolmge0 23291 ovolgelb 23294 ovollb2lem 23302 ovolunlem1a 23310 ovoliunlem1 23316 ovoliunlem2 23317 ovoliun 23319 ovolscalem1 23327 ovolicc1 23330 ovolicc2lem4 23334 voliunlem2 23365 voliunlem3 23366 ioombl1lem2 23373 uniioovol 23393 uniiccvol 23394 uniioombllem1 23395 uniioombllem3 23399 itg2cl 23544 itg2seq 23554 itg2monolem2 23563 itg2monolem3 23564 itg2mono 23565 mdeglt 23870 mdegxrcl 23872 radcnvcl 24216 nmoxr 27749 nmopxr 28853 nmfnxr 28866 xrofsup 29661 supxrnemnf 29662 xrge0tsmsd 29913 mblfinlem3 33578 mblfinlem4 33579 ismblfin 33580 itg2addnclem 33591 itg2gt0cn 33595 binomcxplemdvbinom 38869 binomcxplemcvg 38870 binomcxplemnotnn0 38872 supxrcld 39604 supxrgere 39862 supxrgelem 39866 supxrge 39867 suplesup 39868 suplesup2 39905 supxrcli 39974 liminfval2 40318 liminflelimsuplem 40325 sge0cl 40916 sge0xaddlem1 40968 sge0xaddlem2 40969 sge0reuz 40982 |
Copyright terms: Public domain | W3C validator |