MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supub Structured version   Visualization version   GIF version

Theorem supub 8533
Description: A supremum is an upper bound. See also supcl 8532 and suplub 8534.

This proof demonstrates how to expand an iota-based definition (df-iota 6013) using riotacl2 6789.

(Contributed by NM, 12-Oct-2004.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)

Hypotheses
Ref Expression
supmo.1 (𝜑𝑅 Or 𝐴)
supcl.2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
Assertion
Ref Expression
supub (𝜑 → (𝐶𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝑅,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem supub
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpl 474 . . . . . 6 ((∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → ∀𝑦𝐵 ¬ 𝑥𝑅𝑦)
21a1i 11 . . . . 5 (𝑥𝐴 → ((∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → ∀𝑦𝐵 ¬ 𝑥𝑅𝑦))
32ss2rabi 3826 . . . 4 {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} ⊆ {𝑥𝐴 ∣ ∀𝑦𝐵 ¬ 𝑥𝑅𝑦}
4 supmo.1 . . . . . 6 (𝜑𝑅 Or 𝐴)
54supval2 8529 . . . . 5 (𝜑 → sup(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
6 supcl.2 . . . . . . 7 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
74, 6supeu 8528 . . . . . 6 (𝜑 → ∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
8 riotacl2 6789 . . . . . 6 (∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) ∈ {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))})
97, 8syl 17 . . . . 5 (𝜑 → (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) ∈ {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))})
105, 9eqeltrd 2840 . . . 4 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))})
113, 10sseldi 3743 . . 3 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ {𝑥𝐴 ∣ ∀𝑦𝐵 ¬ 𝑥𝑅𝑦})
12 breq2 4809 . . . . . . . 8 (𝑦 = 𝑤 → (𝑥𝑅𝑦𝑥𝑅𝑤))
1312notbid 307 . . . . . . 7 (𝑦 = 𝑤 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑅𝑤))
1413cbvralv 3311 . . . . . 6 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ↔ ∀𝑤𝐵 ¬ 𝑥𝑅𝑤)
15 breq1 4808 . . . . . . . 8 (𝑥 = sup(𝐵, 𝐴, 𝑅) → (𝑥𝑅𝑤 ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
1615notbid 307 . . . . . . 7 (𝑥 = sup(𝐵, 𝐴, 𝑅) → (¬ 𝑥𝑅𝑤 ↔ ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
1716ralbidv 3125 . . . . . 6 (𝑥 = sup(𝐵, 𝐴, 𝑅) → (∀𝑤𝐵 ¬ 𝑥𝑅𝑤 ↔ ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
1814, 17syl5bb 272 . . . . 5 (𝑥 = sup(𝐵, 𝐴, 𝑅) → (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ↔ ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
1918elrab 3505 . . . 4 (sup(𝐵, 𝐴, 𝑅) ∈ {𝑥𝐴 ∣ ∀𝑦𝐵 ¬ 𝑥𝑅𝑦} ↔ (sup(𝐵, 𝐴, 𝑅) ∈ 𝐴 ∧ ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
2019simprbi 483 . . 3 (sup(𝐵, 𝐴, 𝑅) ∈ {𝑥𝐴 ∣ ∀𝑦𝐵 ¬ 𝑥𝑅𝑦} → ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤)
2111, 20syl 17 . 2 (𝜑 → ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤)
22 breq2 4809 . . . 4 (𝑤 = 𝐶 → (sup(𝐵, 𝐴, 𝑅)𝑅𝑤 ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
2322notbid 307 . . 3 (𝑤 = 𝐶 → (¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤 ↔ ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
2423rspccv 3447 . 2 (∀𝑤𝐵 ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤 → (𝐶𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
2521, 24syl 17 1 (𝜑 → (𝐶𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1632  wcel 2140  wral 3051  wrex 3052  ∃!wreu 3053  {crab 3055   class class class wbr 4805   Or wor 5187  crio 6775  supcsup 8514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-br 4806  df-po 5188  df-so 5189  df-iota 6013  df-riota 6776  df-sup 8516
This theorem is referenced by:  suplub2  8535  supgtoreq  8544  supiso  8549  inflb  8563  suprub  11197  suprzub  11993  supxrun  12360  supxrub  12368  dgrub  24210  supssd  29818  ssnnssfz  29880  oddpwdc  30747  itg2addnclem  33793  supubt  33866  ssnn0ssfz  42656
  Copyright terms: Public domain W3C validator