![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > supssd | Structured version Visualization version GIF version |
Description: Inequality deduction for supremum of a subset. (Contributed by Thierry Arnoux, 21-Mar-2017.) |
Ref | Expression |
---|---|
supssd.0 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
supssd.1 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
supssd.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
supssd.3 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
supssd.4 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))) |
Ref | Expression |
---|---|
supssd | ⊢ (𝜑 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supssd.0 | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
2 | supssd.4 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))) | |
3 | 1, 2 | supcl 8529 | . 2 ⊢ (𝜑 → sup(𝐶, 𝐴, 𝑅) ∈ 𝐴) |
4 | supssd.1 | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
5 | 4 | sseld 3743 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ 𝐵 → 𝑧 ∈ 𝐶)) |
6 | 1, 2 | supub 8530 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ 𝐶 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧)) |
7 | 5, 6 | syld 47 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝐵 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧)) |
8 | 7 | ralrimiv 3103 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧) |
9 | supssd.3 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) | |
10 | 1, 9 | supnub 8533 | . 2 ⊢ (𝜑 → ((sup(𝐶, 𝐴, 𝑅) ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐵 ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑧) → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅))) |
11 | 3, 8, 10 | mp2and 717 | 1 ⊢ (𝜑 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∈ wcel 2139 ∀wral 3050 ∃wrex 3051 ⊆ wss 3715 class class class wbr 4804 Or wor 5186 supcsup 8511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-po 5187 df-so 5188 df-iota 6012 df-riota 6774 df-sup 8513 |
This theorem is referenced by: xrsupssd 29833 |
Copyright terms: Public domain | W3C validator |