MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suprfinzcl Structured version   Visualization version   GIF version

Theorem suprfinzcl 11704
Description: The supremum of a nonempty finite set of integers is a member of the set. (Contributed by AV, 1-Oct-2019.)
Assertion
Ref Expression
suprfinzcl ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → sup(𝐴, ℝ, < ) ∈ 𝐴)

Proof of Theorem suprfinzcl
Dummy variables 𝑎 𝑏 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zssre 11596 . . . . . 6 ℤ ⊆ ℝ
2 ltso 10330 . . . . . 6 < Or ℝ
3 soss 5205 . . . . . 6 (ℤ ⊆ ℝ → ( < Or ℝ → < Or ℤ))
41, 2, 3mp2 9 . . . . 5 < Or ℤ
54a1i 11 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → < Or ℤ)
6 simp3 1133 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ∈ Fin)
7 simp2 1132 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ≠ ∅)
8 simp1 1131 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ⊆ ℤ)
9 fisup2g 8541 . . . 4 (( < Or ℤ ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℤ)) → ∃𝑟𝐴 (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)))
105, 6, 7, 8, 9syl13anc 1479 . . 3 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → ∃𝑟𝐴 (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)))
11 id 22 . . . . . . 7 (𝐴 ⊆ ℤ → 𝐴 ⊆ ℤ)
1211, 1syl6ss 3756 . . . . . 6 (𝐴 ⊆ ℤ → 𝐴 ⊆ ℝ)
13123ad2ant1 1128 . . . . 5 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ⊆ ℝ)
14 ssrexv 3808 . . . . 5 (𝐴 ⊆ ℝ → (∃𝑟𝐴 (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)) → ∃𝑟 ∈ ℝ (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏))))
1513, 14syl 17 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (∃𝑟𝐴 (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)) → ∃𝑟 ∈ ℝ (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏))))
16 ssel2 3739 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℤ ∧ 𝑎𝐴) → 𝑎 ∈ ℤ)
1716zred 11694 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℤ ∧ 𝑎𝐴) → 𝑎 ∈ ℝ)
1817ex 449 . . . . . . . . . . . . 13 (𝐴 ⊆ ℤ → (𝑎𝐴𝑎 ∈ ℝ))
19183ad2ant1 1128 . . . . . . . . . . . 12 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (𝑎𝐴𝑎 ∈ ℝ))
2019adantr 472 . . . . . . . . . . 11 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) → (𝑎𝐴𝑎 ∈ ℝ))
2120imp 444 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) ∧ 𝑎𝐴) → 𝑎 ∈ ℝ)
22 simplr 809 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) ∧ 𝑎𝐴) → 𝑟 ∈ ℝ)
2321, 22lenltd 10395 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) ∧ 𝑎𝐴) → (𝑎𝑟 ↔ ¬ 𝑟 < 𝑎))
2423bicomd 213 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) ∧ 𝑎𝐴) → (¬ 𝑟 < 𝑎𝑎𝑟))
2524ralbidva 3123 . . . . . . 7 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) → (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ↔ ∀𝑎𝐴 𝑎𝑟))
2625biimpd 219 . . . . . 6 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) → (∀𝑎𝐴 ¬ 𝑟 < 𝑎 → ∀𝑎𝐴 𝑎𝑟))
2726adantrd 485 . . . . 5 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) → ((∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)) → ∀𝑎𝐴 𝑎𝑟))
2827reximdva 3155 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (∃𝑟 ∈ ℝ (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)) → ∃𝑟 ∈ ℝ ∀𝑎𝐴 𝑎𝑟))
2915, 28syld 47 . . 3 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (∃𝑟𝐴 (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)) → ∃𝑟 ∈ ℝ ∀𝑎𝐴 𝑎𝑟))
3010, 29mpd 15 . 2 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → ∃𝑟 ∈ ℝ ∀𝑎𝐴 𝑎𝑟)
31 suprzcl 11669 . 2 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑟 ∈ ℝ ∀𝑎𝐴 𝑎𝑟) → sup(𝐴, ℝ, < ) ∈ 𝐴)
3230, 31syld3an3 1516 1 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → sup(𝐴, ℝ, < ) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1072  wcel 2139  wne 2932  wral 3050  wrex 3051  wss 3715  c0 4058   class class class wbr 4804   Or wor 5186  Fincfn 8123  supcsup 8513  cr 10147   < clt 10286  cle 10287  cz 11589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-n0 11505  df-z 11590
This theorem is referenced by:  uzfissfz  40058  ssuzfz  40081  sge0isum  41165
  Copyright terms: Public domain W3C validator