MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppvalbr Structured version   Visualization version   GIF version

Theorem suppvalbr 7344
Description: The value of the operation constructing the support of a function expressed by binary relations. (Contributed by AV, 7-Apr-2019.)
Assertion
Ref Expression
suppvalbr ((𝑅𝑉𝑍𝑊) → (𝑅 supp 𝑍) = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))})
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem suppvalbr
StepHypRef Expression
1 suppval 7342 . 2 ((𝑅𝑉𝑍𝑊) → (𝑅 supp 𝑍) = {𝑥 ∈ dom 𝑅 ∣ (𝑅 “ {𝑥}) ≠ {𝑍}})
2 df-rab 2950 . . . 4 {𝑥 ∈ dom 𝑅 ∣ (𝑅 “ {𝑥}) ≠ {𝑍}} = {𝑥 ∣ (𝑥 ∈ dom 𝑅 ∧ (𝑅 “ {𝑥}) ≠ {𝑍})}
3 vex 3234 . . . . . . 7 𝑥 ∈ V
43eldm 5353 . . . . . 6 (𝑥 ∈ dom 𝑅 ↔ ∃𝑦 𝑥𝑅𝑦)
5 df-sn 4211 . . . . . . . 8 {𝑍} = {𝑦𝑦 = 𝑍}
65neeq2i 2888 . . . . . . 7 ({𝑦𝑥𝑅𝑦} ≠ {𝑍} ↔ {𝑦𝑥𝑅𝑦} ≠ {𝑦𝑦 = 𝑍})
7 imasng 5522 . . . . . . . . 9 (𝑥 ∈ V → (𝑅 “ {𝑥}) = {𝑦𝑥𝑅𝑦})
83, 7ax-mp 5 . . . . . . . 8 (𝑅 “ {𝑥}) = {𝑦𝑥𝑅𝑦}
98neeq1i 2887 . . . . . . 7 ((𝑅 “ {𝑥}) ≠ {𝑍} ↔ {𝑦𝑥𝑅𝑦} ≠ {𝑍})
10 nabbi 2925 . . . . . . 7 (∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍) ↔ {𝑦𝑥𝑅𝑦} ≠ {𝑦𝑦 = 𝑍})
116, 9, 103bitr4i 292 . . . . . 6 ((𝑅 “ {𝑥}) ≠ {𝑍} ↔ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))
124, 11anbi12i 733 . . . . 5 ((𝑥 ∈ dom 𝑅 ∧ (𝑅 “ {𝑥}) ≠ {𝑍}) ↔ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍)))
1312abbii 2768 . . . 4 {𝑥 ∣ (𝑥 ∈ dom 𝑅 ∧ (𝑅 “ {𝑥}) ≠ {𝑍})} = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))}
142, 13eqtri 2673 . . 3 {𝑥 ∈ dom 𝑅 ∣ (𝑅 “ {𝑥}) ≠ {𝑍}} = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))}
1514a1i 11 . 2 ((𝑅𝑉𝑍𝑊) → {𝑥 ∈ dom 𝑅 ∣ (𝑅 “ {𝑥}) ≠ {𝑍}} = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))})
16 df-ne 2824 . . . . . . . 8 (𝑦𝑍 ↔ ¬ 𝑦 = 𝑍)
1716bicomi 214 . . . . . . 7 𝑦 = 𝑍𝑦𝑍)
1817bibi2i 326 . . . . . 6 ((𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍) ↔ (𝑥𝑅𝑦𝑦𝑍))
1918exbii 1814 . . . . 5 (∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍) ↔ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))
2019anbi2i 730 . . . 4 ((∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍)) ↔ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
2120abbii 2768 . . 3 {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))} = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))}
2221a1i 11 . 2 ((𝑅𝑉𝑍𝑊) → {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))} = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))})
231, 15, 223eqtrd 2689 1 ((𝑅𝑉𝑍𝑊) → (𝑅 supp 𝑍) = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wex 1744  wcel 2030  {cab 2637  wne 2823  {crab 2945  Vcvv 3231  {csn 4210   class class class wbr 4685  dom cdm 5143  cima 5146  (class class class)co 6690   supp csupp 7340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-supp 7341
This theorem is referenced by:  suppimacnvss  7350  suppimacnv  7351
  Copyright terms: Public domain W3C validator