![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suppval1 | Structured version Visualization version GIF version |
Description: The value of the operation constructing the support of a function. (Contributed by AV, 6-Apr-2019.) |
Ref | Expression |
---|---|
suppval1 | ⊢ ((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋‘𝑖) ≠ 𝑍}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppval 7447 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) | |
2 | 1 | 3adant1 1123 | . 2 ⊢ ((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}}) |
3 | funfn 6061 | . . . . . . . . 9 ⊢ (Fun 𝑋 ↔ 𝑋 Fn dom 𝑋) | |
4 | 3 | biimpi 206 | . . . . . . . 8 ⊢ (Fun 𝑋 → 𝑋 Fn dom 𝑋) |
5 | 4 | 3ad2ant1 1126 | . . . . . . 7 ⊢ ((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑋 Fn dom 𝑋) |
6 | fnsnfv 6400 | . . . . . . 7 ⊢ ((𝑋 Fn dom 𝑋 ∧ 𝑖 ∈ dom 𝑋) → {(𝑋‘𝑖)} = (𝑋 “ {𝑖})) | |
7 | 5, 6 | sylan 561 | . . . . . 6 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → {(𝑋‘𝑖)} = (𝑋 “ {𝑖})) |
8 | 7 | eqcomd 2776 | . . . . 5 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → (𝑋 “ {𝑖}) = {(𝑋‘𝑖)}) |
9 | 8 | neeq1d 3001 | . . . 4 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → ((𝑋 “ {𝑖}) ≠ {𝑍} ↔ {(𝑋‘𝑖)} ≠ {𝑍})) |
10 | fvex 6342 | . . . . . 6 ⊢ (𝑋‘𝑖) ∈ V | |
11 | sneqbg 4504 | . . . . . 6 ⊢ ((𝑋‘𝑖) ∈ V → ({(𝑋‘𝑖)} = {𝑍} ↔ (𝑋‘𝑖) = 𝑍)) | |
12 | 10, 11 | mp1i 13 | . . . . 5 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → ({(𝑋‘𝑖)} = {𝑍} ↔ (𝑋‘𝑖) = 𝑍)) |
13 | 12 | necon3bid 2986 | . . . 4 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → ({(𝑋‘𝑖)} ≠ {𝑍} ↔ (𝑋‘𝑖) ≠ 𝑍)) |
14 | 9, 13 | bitrd 268 | . . 3 ⊢ (((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑖 ∈ dom 𝑋) → ((𝑋 “ {𝑖}) ≠ {𝑍} ↔ (𝑋‘𝑖) ≠ 𝑍)) |
15 | 14 | rabbidva 3337 | . 2 ⊢ ((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}} = {𝑖 ∈ dom 𝑋 ∣ (𝑋‘𝑖) ≠ 𝑍}) |
16 | 2, 15 | eqtrd 2804 | 1 ⊢ ((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋‘𝑖) ≠ 𝑍}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 ≠ wne 2942 {crab 3064 Vcvv 3349 {csn 4314 dom cdm 5249 “ cima 5252 Fun wfun 6025 Fn wfn 6026 ‘cfv 6031 (class class class)co 6792 supp csupp 7445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-supp 7446 |
This theorem is referenced by: suppvalfn 7452 suppfnss 7470 suppfnssOLD 7471 fnsuppres 7473 domnmsuppn0 42668 rmsuppss 42669 mndpsuppss 42670 scmsuppss 42671 suppdm 42818 |
Copyright terms: Public domain | W3C validator |