Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssov1 Structured version   Visualization version   GIF version

Theorem suppssov1 7447
 Description: Formula building theorem for support restrictions: operator with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 28-May-2019.)
Hypotheses
Ref Expression
suppssov1.s (𝜑 → ((𝑥𝐷𝐴) supp 𝑌) ⊆ 𝐿)
suppssov1.o ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
suppssov1.a ((𝜑𝑥𝐷) → 𝐴𝑉)
suppssov1.b ((𝜑𝑥𝐷) → 𝐵𝑅)
suppssov1.y (𝜑𝑌𝑊)
Assertion
Ref Expression
suppssov1 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
Distinct variable groups:   𝜑,𝑣   𝜑,𝑥   𝑣,𝐵   𝑥,𝐷   𝑣,𝑂   𝑣,𝑅   𝑣,𝑌   𝑥,𝑌   𝑣,𝑍   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥,𝑣)   𝐵(𝑥)   𝐷(𝑣)   𝑅(𝑥)   𝐿(𝑥,𝑣)   𝑂(𝑥)   𝑉(𝑥,𝑣)   𝑊(𝑥,𝑣)

Proof of Theorem suppssov1
StepHypRef Expression
1 suppssov1.a . . . . . . . . . . 11 ((𝜑𝑥𝐷) → 𝐴𝑉)
2 elex 3316 . . . . . . . . . . 11 (𝐴𝑉𝐴 ∈ V)
31, 2syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐷) → 𝐴 ∈ V)
43adantll 752 . . . . . . . . 9 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → 𝐴 ∈ V)
54adantr 472 . . . . . . . 8 (((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴 ∈ V)
6 eldifsni 4429 . . . . . . . . . 10 ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → (𝐴𝑂𝐵) ≠ 𝑍)
7 suppssov1.b . . . . . . . . . . . . . 14 ((𝜑𝑥𝐷) → 𝐵𝑅)
87adantll 752 . . . . . . . . . . . . 13 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → 𝐵𝑅)
9 suppssov1.o . . . . . . . . . . . . . . . 16 ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
109ralrimiva 3068 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑣𝑅 (𝑌𝑂𝑣) = 𝑍)
1110adantl 473 . . . . . . . . . . . . . 14 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ∀𝑣𝑅 (𝑌𝑂𝑣) = 𝑍)
1211adantr 472 . . . . . . . . . . . . 13 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → ∀𝑣𝑅 (𝑌𝑂𝑣) = 𝑍)
13 oveq2 6773 . . . . . . . . . . . . . . 15 (𝑣 = 𝐵 → (𝑌𝑂𝑣) = (𝑌𝑂𝐵))
1413eqeq1d 2726 . . . . . . . . . . . . . 14 (𝑣 = 𝐵 → ((𝑌𝑂𝑣) = 𝑍 ↔ (𝑌𝑂𝐵) = 𝑍))
1514rspcva 3411 . . . . . . . . . . . . 13 ((𝐵𝑅 ∧ ∀𝑣𝑅 (𝑌𝑂𝑣) = 𝑍) → (𝑌𝑂𝐵) = 𝑍)
168, 12, 15syl2anc 696 . . . . . . . . . . . 12 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → (𝑌𝑂𝐵) = 𝑍)
17 oveq1 6772 . . . . . . . . . . . . 13 (𝐴 = 𝑌 → (𝐴𝑂𝐵) = (𝑌𝑂𝐵))
1817eqeq1d 2726 . . . . . . . . . . . 12 (𝐴 = 𝑌 → ((𝐴𝑂𝐵) = 𝑍 ↔ (𝑌𝑂𝐵) = 𝑍))
1916, 18syl5ibrcom 237 . . . . . . . . . . 11 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → (𝐴 = 𝑌 → (𝐴𝑂𝐵) = 𝑍))
2019necon3d 2917 . . . . . . . . . 10 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → ((𝐴𝑂𝐵) ≠ 𝑍𝐴𝑌))
216, 20syl5 34 . . . . . . . . 9 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → 𝐴𝑌))
2221imp 444 . . . . . . . 8 (((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴𝑌)
23 eldifsn 4425 . . . . . . . 8 (𝐴 ∈ (V ∖ {𝑌}) ↔ (𝐴 ∈ V ∧ 𝐴𝑌))
245, 22, 23sylanbrc 701 . . . . . . 7 (((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴 ∈ (V ∖ {𝑌}))
2524ex 449 . . . . . 6 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → 𝐴 ∈ (V ∖ {𝑌})))
2625ss2rabdv 3789 . . . . 5 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → {𝑥𝐷 ∣ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})} ⊆ {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})})
27 eqid 2724 . . . . . 6 (𝑥𝐷 ↦ (𝐴𝑂𝐵)) = (𝑥𝐷 ↦ (𝐴𝑂𝐵))
28 simpll 807 . . . . . 6 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝐷 ∈ V)
29 simplr 809 . . . . . 6 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝑍 ∈ V)
3027, 28, 29mptsuppdifd 7437 . . . . 5 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) = {𝑥𝐷 ∣ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})})
31 eqid 2724 . . . . . 6 (𝑥𝐷𝐴) = (𝑥𝐷𝐴)
32 suppssov1.y . . . . . . 7 (𝜑𝑌𝑊)
3332adantl 473 . . . . . 6 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝑌𝑊)
3431, 28, 33mptsuppdifd 7437 . . . . 5 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷𝐴) supp 𝑌) = {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})})
3526, 30, 343sstr4d 3754 . . . 4 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ ((𝑥𝐷𝐴) supp 𝑌))
36 suppssov1.s . . . . 5 (𝜑 → ((𝑥𝐷𝐴) supp 𝑌) ⊆ 𝐿)
3736adantl 473 . . . 4 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷𝐴) supp 𝑌) ⊆ 𝐿)
3835, 37sstrd 3719 . . 3 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
3938ex 449 . 2 ((𝐷 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿))
40 mptexg 6600 . . . . . . 7 (𝐷 ∈ V → (𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V)
41 ovex 6793 . . . . . . . . . 10 (𝐴𝑂𝐵) ∈ V
4241rgenw 3026 . . . . . . . . 9 𝑥𝐷 (𝐴𝑂𝐵) ∈ V
43 dmmptg 5745 . . . . . . . . 9 (∀𝑥𝐷 (𝐴𝑂𝐵) ∈ V → dom (𝑥𝐷 ↦ (𝐴𝑂𝐵)) = 𝐷)
4442, 43ax-mp 5 . . . . . . . 8 dom (𝑥𝐷 ↦ (𝐴𝑂𝐵)) = 𝐷
45 dmexg 7214 . . . . . . . 8 ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V → dom (𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V)
4644, 45syl5eqelr 2808 . . . . . . 7 ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V → 𝐷 ∈ V)
4740, 46impbii 199 . . . . . 6 (𝐷 ∈ V ↔ (𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V)
4847anbi1i 733 . . . . 5 ((𝐷 ∈ V ∧ 𝑍 ∈ V) ↔ ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V ∧ 𝑍 ∈ V))
49 supp0prc 7418 . . . . 5 (¬ ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) = ∅)
5048, 49sylnbi 319 . . . 4 (¬ (𝐷 ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) = ∅)
51 0ss 4080 . . . 4 ∅ ⊆ 𝐿
5250, 51syl6eqss 3761 . . 3 (¬ (𝐷 ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
5352a1d 25 . 2 (¬ (𝐷 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿))
5439, 53pm2.61i 176 1 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1596   ∈ wcel 2103   ≠ wne 2896  ∀wral 3014  {crab 3018  Vcvv 3304   ∖ cdif 3677   ⊆ wss 3680  ∅c0 4023  {csn 4285   ↦ cmpt 4837  dom cdm 5218  (class class class)co 6765   supp csupp 7415 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-id 5128  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-supp 7416 This theorem is referenced by:  suppssof1  7448  evlslem6  19636  plypf1  24088
 Copyright terms: Public domain W3C validator