MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssfv Structured version   Visualization version   GIF version

Theorem suppssfv 7451
Description: Formula building theorem for support restriction, on a function which preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 28-May-2019.)
Hypotheses
Ref Expression
suppssfv.a (𝜑 → ((𝑥𝐷𝐴) supp 𝑌) ⊆ 𝐿)
suppssfv.f (𝜑 → (𝐹𝑌) = 𝑍)
suppssfv.v ((𝜑𝑥𝐷) → 𝐴𝑉)
suppssfv.y (𝜑𝑌𝑈)
Assertion
Ref Expression
suppssfv (𝜑 → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) ⊆ 𝐿)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐷   𝑥,𝑌   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥)   𝑈(𝑥)   𝐹(𝑥)   𝐿(𝑥)   𝑉(𝑥)

Proof of Theorem suppssfv
StepHypRef Expression
1 eldifsni 4429 . . . . . . 7 ((𝐹𝐴) ∈ (V ∖ {𝑍}) → (𝐹𝐴) ≠ 𝑍)
2 suppssfv.v . . . . . . . . . . . 12 ((𝜑𝑥𝐷) → 𝐴𝑉)
3 elex 3316 . . . . . . . . . . . 12 (𝐴𝑉𝐴 ∈ V)
42, 3syl 17 . . . . . . . . . . 11 ((𝜑𝑥𝐷) → 𝐴 ∈ V)
54adantll 752 . . . . . . . . . 10 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → 𝐴 ∈ V)
65adantr 472 . . . . . . . . 9 (((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) ∧ (𝐹𝐴) ≠ 𝑍) → 𝐴 ∈ V)
7 suppssfv.f . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝑌) = 𝑍)
8 fveq2 6304 . . . . . . . . . . . . . . 15 (𝐴 = 𝑌 → (𝐹𝐴) = (𝐹𝑌))
98eqeq1d 2726 . . . . . . . . . . . . . 14 (𝐴 = 𝑌 → ((𝐹𝐴) = 𝑍 ↔ (𝐹𝑌) = 𝑍))
107, 9syl5ibrcom 237 . . . . . . . . . . . . 13 (𝜑 → (𝐴 = 𝑌 → (𝐹𝐴) = 𝑍))
1110necon3d 2917 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝐴) ≠ 𝑍𝐴𝑌))
1211adantl 473 . . . . . . . . . . 11 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝐹𝐴) ≠ 𝑍𝐴𝑌))
1312adantr 472 . . . . . . . . . 10 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → ((𝐹𝐴) ≠ 𝑍𝐴𝑌))
1413imp 444 . . . . . . . . 9 (((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) ∧ (𝐹𝐴) ≠ 𝑍) → 𝐴𝑌)
15 eldifsn 4425 . . . . . . . . 9 (𝐴 ∈ (V ∖ {𝑌}) ↔ (𝐴 ∈ V ∧ 𝐴𝑌))
166, 14, 15sylanbrc 701 . . . . . . . 8 (((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) ∧ (𝐹𝐴) ≠ 𝑍) → 𝐴 ∈ (V ∖ {𝑌}))
1716ex 449 . . . . . . 7 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → ((𝐹𝐴) ≠ 𝑍𝐴 ∈ (V ∖ {𝑌})))
181, 17syl5 34 . . . . . 6 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → ((𝐹𝐴) ∈ (V ∖ {𝑍}) → 𝐴 ∈ (V ∖ {𝑌})))
1918ss2rabdv 3789 . . . . 5 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → {𝑥𝐷 ∣ (𝐹𝐴) ∈ (V ∖ {𝑍})} ⊆ {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})})
20 eqid 2724 . . . . . 6 (𝑥𝐷 ↦ (𝐹𝐴)) = (𝑥𝐷 ↦ (𝐹𝐴))
21 simpll 807 . . . . . 6 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝐷 ∈ V)
22 simplr 809 . . . . . 6 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝑍 ∈ V)
2320, 21, 22mptsuppdifd 7437 . . . . 5 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) = {𝑥𝐷 ∣ (𝐹𝐴) ∈ (V ∖ {𝑍})})
24 eqid 2724 . . . . . 6 (𝑥𝐷𝐴) = (𝑥𝐷𝐴)
25 suppssfv.y . . . . . . 7 (𝜑𝑌𝑈)
2625adantl 473 . . . . . 6 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝑌𝑈)
2724, 21, 26mptsuppdifd 7437 . . . . 5 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷𝐴) supp 𝑌) = {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})})
2819, 23, 273sstr4d 3754 . . . 4 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) ⊆ ((𝑥𝐷𝐴) supp 𝑌))
29 suppssfv.a . . . . 5 (𝜑 → ((𝑥𝐷𝐴) supp 𝑌) ⊆ 𝐿)
3029adantl 473 . . . 4 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷𝐴) supp 𝑌) ⊆ 𝐿)
3128, 30sstrd 3719 . . 3 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) ⊆ 𝐿)
3231ex 449 . 2 ((𝐷 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) ⊆ 𝐿))
33 mptexg 6600 . . . . . . 7 (𝐷 ∈ V → (𝑥𝐷 ↦ (𝐹𝐴)) ∈ V)
34 fvex 6314 . . . . . . . . . 10 (𝐹𝐴) ∈ V
3534rgenw 3026 . . . . . . . . 9 𝑥𝐷 (𝐹𝐴) ∈ V
36 dmmptg 5745 . . . . . . . . 9 (∀𝑥𝐷 (𝐹𝐴) ∈ V → dom (𝑥𝐷 ↦ (𝐹𝐴)) = 𝐷)
3735, 36ax-mp 5 . . . . . . . 8 dom (𝑥𝐷 ↦ (𝐹𝐴)) = 𝐷
38 dmexg 7214 . . . . . . . 8 ((𝑥𝐷 ↦ (𝐹𝐴)) ∈ V → dom (𝑥𝐷 ↦ (𝐹𝐴)) ∈ V)
3937, 38syl5eqelr 2808 . . . . . . 7 ((𝑥𝐷 ↦ (𝐹𝐴)) ∈ V → 𝐷 ∈ V)
4033, 39impbii 199 . . . . . 6 (𝐷 ∈ V ↔ (𝑥𝐷 ↦ (𝐹𝐴)) ∈ V)
4140anbi1i 733 . . . . 5 ((𝐷 ∈ V ∧ 𝑍 ∈ V) ↔ ((𝑥𝐷 ↦ (𝐹𝐴)) ∈ V ∧ 𝑍 ∈ V))
42 supp0prc 7418 . . . . 5 (¬ ((𝑥𝐷 ↦ (𝐹𝐴)) ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) = ∅)
4341, 42sylnbi 319 . . . 4 (¬ (𝐷 ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) = ∅)
44 0ss 4080 . . . 4 ∅ ⊆ 𝐿
4543, 44syl6eqss 3761 . . 3 (¬ (𝐷 ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) ⊆ 𝐿)
4645a1d 25 . 2 (¬ (𝐷 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) ⊆ 𝐿))
4732, 46pm2.61i 176 1 (𝜑 → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) ⊆ 𝐿)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1596  wcel 2103  wne 2896  wral 3014  {crab 3018  Vcvv 3304  cdif 3677  wss 3680  c0 4023  {csn 4285  cmpt 4837  dom cdm 5218  cfv 6001  (class class class)co 6765   supp csupp 7415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-id 5128  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-supp 7416
This theorem is referenced by:  evlslem2  19635  evlslem6  19636
  Copyright terms: Public domain W3C validator