![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suppssdm | Structured version Visualization version GIF version |
Description: The support of a function is a subset of the function's domain. (Contributed by AV, 30-May-2019.) |
Ref | Expression |
---|---|
suppssdm | ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppval 7342 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}}) | |
2 | ssrab2 3720 | . . 3 ⊢ {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}} ⊆ dom 𝐹 | |
3 | 1, 2 | syl6eqss 3688 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
4 | supp0prc 7343 | . . 3 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅) | |
5 | 0ss 4005 | . . 3 ⊢ ∅ ⊆ dom 𝐹 | |
6 | 4, 5 | syl6eqss 3688 | . 2 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
7 | 3, 6 | pm2.61i 176 | 1 ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 383 ∈ wcel 2030 ≠ wne 2823 {crab 2945 Vcvv 3231 ⊆ wss 3607 ∅c0 3948 {csn 4210 dom cdm 5143 “ cima 5146 (class class class)co 6690 supp csupp 7340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-supp 7341 |
This theorem is referenced by: snopsuppss 7355 wemapso2lem 8498 cantnfcl 8602 cantnfle 8606 cantnflt 8607 cantnff 8609 cantnfres 8612 cantnfp1lem2 8614 cantnfp1lem3 8615 cantnflem1b 8621 cantnflem1d 8623 cantnflem1 8624 cantnflem3 8626 cnfcomlem 8634 cnfcom 8635 cnfcom2lem 8636 cnfcom3lem 8638 cnfcom3 8639 fsuppmapnn0fiublem 12829 fsuppmapnn0fiub 12830 fsuppmapnn0fiubOLD 12831 gsumval3lem1 18352 gsumval3lem2 18353 gsumval3 18354 gsumzres 18356 gsumzcl2 18357 gsumzf1o 18359 gsumzaddlem 18367 gsumconst 18380 gsumzoppg 18390 gsum2d 18417 dpjidcl 18503 psrass1lem 19425 psrass1 19453 psrass23l 19456 psrcom 19457 psrass23 19458 mplcoe1 19513 psropprmul 19656 coe1mul2 19687 gsumfsum 19861 regsumsupp 20016 frlmlbs 20184 tsmsgsum 21989 rrxcph 23226 rrxsuppss 23232 rrxmval 23234 mdegfval 23867 mdegleb 23869 mdegldg 23871 deg1mul3le 23921 wilthlem3 24841 fdivmpt 42659 fdivmptf 42660 refdivmptf 42661 fdivpm 42662 refdivpm 42663 |
Copyright terms: Public domain | W3C validator |