![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supmax | Structured version Visualization version GIF version |
Description: The greatest element of a set is its supremum. Note that the converse is not true; the supremum might not be an element of the set considered. (Contributed by Jeff Hoffman, 17-Jun-2008.) (Proof shortened by OpenAI, 30-Mar-2020.) |
Ref | Expression |
---|---|
supmax.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
supmax.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
supmax.3 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
supmax.4 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝐶𝑅𝑦) |
Ref | Expression |
---|---|
supmax | ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supmax.1 | . 2 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
2 | supmax.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
3 | supmax.4 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝐶𝑅𝑦) | |
4 | supmax.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
5 | simprr 813 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝐶)) → 𝑦𝑅𝐶) | |
6 | breq2 4808 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝑦𝑅𝑧 ↔ 𝑦𝑅𝐶)) | |
7 | 6 | rspcev 3449 | . . 3 ⊢ ((𝐶 ∈ 𝐵 ∧ 𝑦𝑅𝐶) → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) |
8 | 4, 5, 7 | syl2an2r 911 | . 2 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝐶)) → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) |
9 | 1, 2, 3, 8 | eqsupd 8530 | 1 ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∃wrex 3051 class class class wbr 4804 Or wor 5186 supcsup 8513 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-po 5187 df-so 5188 df-iota 6012 df-riota 6775 df-sup 8515 |
This theorem is referenced by: suppr 8544 gsumesum 30451 supfz 31941 inffzOLD 31943 mblfinlem2 33778 |
Copyright terms: Public domain | W3C validator |