MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suplem2pr Structured version   Visualization version   GIF version

Theorem suplem2pr 9835
Description: The union of a set of positive reals (if a positive real) is its supremum (the least upper bound). Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
suplem2pr (𝐴P → ((𝑦𝐴 → ¬ 𝐴<P 𝑦) ∧ (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
Distinct variable group:   𝑦,𝑧,𝐴

Proof of Theorem suplem2pr
StepHypRef Expression
1 ltrelpr 9780 . . . . . 6 <P ⊆ (P × P)
21brel 5138 . . . . 5 (𝑦<P 𝐴 → (𝑦P 𝐴P))
32simpld 475 . . . 4 (𝑦<P 𝐴𝑦P)
4 ralnex 2988 . . . . . . . . 9 (∀𝑧𝐴 ¬ 𝑦<P 𝑧 ↔ ¬ ∃𝑧𝐴 𝑦<P 𝑧)
5 ssel2 3583 . . . . . . . . . . . 12 ((𝐴P𝑧𝐴) → 𝑧P)
6 ltsopr 9814 . . . . . . . . . . . . . . . 16 <P Or P
7 sotric 5031 . . . . . . . . . . . . . . . 16 ((<P Or P ∧ (𝑦P𝑧P)) → (𝑦<P 𝑧 ↔ ¬ (𝑦 = 𝑧𝑧<P 𝑦)))
86, 7mpan 705 . . . . . . . . . . . . . . 15 ((𝑦P𝑧P) → (𝑦<P 𝑧 ↔ ¬ (𝑦 = 𝑧𝑧<P 𝑦)))
98con2bid 344 . . . . . . . . . . . . . 14 ((𝑦P𝑧P) → ((𝑦 = 𝑧𝑧<P 𝑦) ↔ ¬ 𝑦<P 𝑧))
109ancoms 469 . . . . . . . . . . . . 13 ((𝑧P𝑦P) → ((𝑦 = 𝑧𝑧<P 𝑦) ↔ ¬ 𝑦<P 𝑧))
11 ltprord 9812 . . . . . . . . . . . . . . 15 ((𝑧P𝑦P) → (𝑧<P 𝑦𝑧𝑦))
1211orbi2d 737 . . . . . . . . . . . . . 14 ((𝑧P𝑦P) → ((𝑦 = 𝑧𝑧<P 𝑦) ↔ (𝑦 = 𝑧𝑧𝑦)))
13 sspss 3690 . . . . . . . . . . . . . . 15 (𝑧𝑦 ↔ (𝑧𝑦𝑧 = 𝑦))
14 equcom 1942 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑦𝑦 = 𝑧)
1514orbi2i 541 . . . . . . . . . . . . . . 15 ((𝑧𝑦𝑧 = 𝑦) ↔ (𝑧𝑦𝑦 = 𝑧))
16 orcom 402 . . . . . . . . . . . . . . 15 ((𝑧𝑦𝑦 = 𝑧) ↔ (𝑦 = 𝑧𝑧𝑦))
1713, 15, 163bitri 286 . . . . . . . . . . . . . 14 (𝑧𝑦 ↔ (𝑦 = 𝑧𝑧𝑦))
1812, 17syl6bbr 278 . . . . . . . . . . . . 13 ((𝑧P𝑦P) → ((𝑦 = 𝑧𝑧<P 𝑦) ↔ 𝑧𝑦))
1910, 18bitr3d 270 . . . . . . . . . . . 12 ((𝑧P𝑦P) → (¬ 𝑦<P 𝑧𝑧𝑦))
205, 19sylan 488 . . . . . . . . . . 11 (((𝐴P𝑧𝐴) ∧ 𝑦P) → (¬ 𝑦<P 𝑧𝑧𝑦))
2120an32s 845 . . . . . . . . . 10 (((𝐴P𝑦P) ∧ 𝑧𝐴) → (¬ 𝑦<P 𝑧𝑧𝑦))
2221ralbidva 2981 . . . . . . . . 9 ((𝐴P𝑦P) → (∀𝑧𝐴 ¬ 𝑦<P 𝑧 ↔ ∀𝑧𝐴 𝑧𝑦))
234, 22syl5bbr 274 . . . . . . . 8 ((𝐴P𝑦P) → (¬ ∃𝑧𝐴 𝑦<P 𝑧 ↔ ∀𝑧𝐴 𝑧𝑦))
24 unissb 4442 . . . . . . . 8 ( 𝐴𝑦 ↔ ∀𝑧𝐴 𝑧𝑦)
2523, 24syl6bbr 278 . . . . . . 7 ((𝐴P𝑦P) → (¬ ∃𝑧𝐴 𝑦<P 𝑧 𝐴𝑦))
26 ssnpss 3694 . . . . . . . 8 ( 𝐴𝑦 → ¬ 𝑦 𝐴)
27 ltprord 9812 . . . . . . . . . 10 ((𝑦P 𝐴P) → (𝑦<P 𝐴𝑦 𝐴))
2827biimpd 219 . . . . . . . . 9 ((𝑦P 𝐴P) → (𝑦<P 𝐴𝑦 𝐴))
292, 28mpcom 38 . . . . . . . 8 (𝑦<P 𝐴𝑦 𝐴)
3026, 29nsyl 135 . . . . . . 7 ( 𝐴𝑦 → ¬ 𝑦<P 𝐴)
3125, 30syl6bi 243 . . . . . 6 ((𝐴P𝑦P) → (¬ ∃𝑧𝐴 𝑦<P 𝑧 → ¬ 𝑦<P 𝐴))
3231con4d 114 . . . . 5 ((𝐴P𝑦P) → (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧))
3332ex 450 . . . 4 (𝐴P → (𝑦P → (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
343, 33syl5 34 . . 3 (𝐴P → (𝑦<P 𝐴 → (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
3534pm2.43d 53 . 2 (𝐴P → (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧))
36 elssuni 4440 . . . 4 (𝑦𝐴𝑦 𝐴)
37 ssnpss 3694 . . . 4 (𝑦 𝐴 → ¬ 𝐴𝑦)
3836, 37syl 17 . . 3 (𝑦𝐴 → ¬ 𝐴𝑦)
391brel 5138 . . . 4 ( 𝐴<P 𝑦 → ( 𝐴P𝑦P))
40 ltprord 9812 . . . . 5 (( 𝐴P𝑦P) → ( 𝐴<P 𝑦 𝐴𝑦))
4140biimpd 219 . . . 4 (( 𝐴P𝑦P) → ( 𝐴<P 𝑦 𝐴𝑦))
4239, 41mpcom 38 . . 3 ( 𝐴<P 𝑦 𝐴𝑦)
4338, 42nsyl 135 . 2 (𝑦𝐴 → ¬ 𝐴<P 𝑦)
4435, 43jctil 559 1 (𝐴P → ((𝑦𝐴 → ¬ 𝐴<P 𝑦) ∧ (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  wcel 1987  wral 2908  wrex 2909  wss 3560  wpss 3561   cuni 4409   class class class wbr 4623   Or wor 5004  Pcnp 9641  <P cltp 9645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-oadd 7524  df-omul 7525  df-er 7702  df-ni 9654  df-mi 9656  df-lti 9657  df-ltpq 9692  df-enq 9693  df-nq 9694  df-ltnq 9700  df-np 9763  df-ltp 9767
This theorem is referenced by:  supexpr  9836
  Copyright terms: Public domain W3C validator