![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supeq1i | Structured version Visualization version GIF version |
Description: Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
supeq1i.1 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
supeq1i | ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supeq1i.1 | . 2 ⊢ 𝐵 = 𝐶 | |
2 | supeq1 8467 | . 2 ⊢ (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1596 supcsup 8462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ral 3019 df-rex 3020 df-rab 3023 df-uni 4545 df-sup 8464 |
This theorem is referenced by: supsn 8494 infrenegsup 11119 supxrmnf 12261 rpsup 12780 resup 12781 gcdcom 15358 gcdass 15387 ovolgelb 23369 itg2seq 23629 itg2i1fseq 23642 itg2cnlem1 23648 dvfsumrlim 23914 pserdvlem2 24302 logtayl 24526 nmopnegi 29054 nmop0 29075 nmfn0 29076 esumnul 30340 ismblfin 33682 ovoliunnfl 33683 voliunnfl 33685 itg2addnclem 33693 binomcxplemdvsum 38973 binomcxp 38975 supxrleubrnmptf 40095 limsup0 40346 limsupresico 40352 liminfresico 40423 liminf10ex 40426 ioodvbdlimc1lem1 40566 ioodvbdlimc1 40568 ioodvbdlimc2 40570 fourierdlem41 40785 fourierdlem48 40791 fourierdlem49 40792 fourierdlem70 40813 fourierdlem71 40814 fourierdlem97 40840 fourierdlem103 40846 fourierdlem104 40847 fourierdlem109 40852 sge00 41013 sge0sn 41016 sge0xaddlem2 41071 decsmf 41398 smflimsuplem1 41449 smflimsuplem3 41451 smflimsup 41457 |
Copyright terms: Public domain | W3C validator |