Step | Hyp | Ref
| Expression |
1 | | supcnvlimsup.z |
. . 3
⊢ 𝑍 =
(ℤ≥‘𝑀) |
2 | | supcnvlimsup.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) |
3 | | supcnvlimsup.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
4 | 3 | adantr 472 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐹:𝑍⟶ℝ) |
5 | | id 22 |
. . . . . . . . . 10
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ 𝑍) |
6 | 1, 5 | uzssd2 40160 |
. . . . . . . . 9
⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ⊆ 𝑍) |
7 | 6 | adantl 473 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (ℤ≥‘𝑛) ⊆ 𝑍) |
8 | 4, 7 | feqresmpt 6413 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹 ↾ (ℤ≥‘𝑛)) = (𝑚 ∈ (ℤ≥‘𝑛) ↦ (𝐹‘𝑚))) |
9 | 8 | rneqd 5508 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ran (𝐹 ↾ (ℤ≥‘𝑛)) = ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ (𝐹‘𝑚))) |
10 | 9 | supeq1d 8519 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < )
= sup(ran (𝑚 ∈
(ℤ≥‘𝑛) ↦ (𝐹‘𝑚)), ℝ*, <
)) |
11 | | nfcv 2902 |
. . . . . . . . 9
⊢
Ⅎ𝑚𝐹 |
12 | | supcnvlimsup.r |
. . . . . . . . . 10
⊢ (𝜑 → (lim sup‘𝐹) ∈
ℝ) |
13 | 12 | renepnfd 10302 |
. . . . . . . . 9
⊢ (𝜑 → (lim sup‘𝐹) ≠
+∞) |
14 | 11, 1, 3, 13 | limsupubuz 40466 |
. . . . . . . 8
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑚 ∈ 𝑍 (𝐹‘𝑚) ≤ 𝑥) |
15 | 14 | adantr 472 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ∃𝑥 ∈ ℝ ∀𝑚 ∈ 𝑍 (𝐹‘𝑚) ≤ 𝑥) |
16 | | ssralv 3807 |
. . . . . . . . . 10
⊢
((ℤ≥‘𝑛) ⊆ 𝑍 → (∀𝑚 ∈ 𝑍 (𝐹‘𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ≥‘𝑛)(𝐹‘𝑚) ≤ 𝑥)) |
17 | 6, 16 | syl 17 |
. . . . . . . . 9
⊢ (𝑛 ∈ 𝑍 → (∀𝑚 ∈ 𝑍 (𝐹‘𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ≥‘𝑛)(𝐹‘𝑚) ≤ 𝑥)) |
18 | 17 | adantl 473 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (∀𝑚 ∈ 𝑍 (𝐹‘𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ≥‘𝑛)(𝐹‘𝑚) ≤ 𝑥)) |
19 | 18 | reximdv 3154 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (∃𝑥 ∈ ℝ ∀𝑚 ∈ 𝑍 (𝐹‘𝑚) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ≥‘𝑛)(𝐹‘𝑚) ≤ 𝑥)) |
20 | 15, 19 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ≥‘𝑛)(𝐹‘𝑚) ≤ 𝑥) |
21 | | nfv 1992 |
. . . . . . 7
⊢
Ⅎ𝑚(𝜑 ∧ 𝑛 ∈ 𝑍) |
22 | 1 | eluzelz2 40143 |
. . . . . . . . 9
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ) |
23 | | uzid 11914 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
(ℤ≥‘𝑛)) |
24 | | ne0i 4064 |
. . . . . . . . 9
⊢ (𝑛 ∈
(ℤ≥‘𝑛) → (ℤ≥‘𝑛) ≠ ∅) |
25 | 22, 23, 24 | 3syl 18 |
. . . . . . . 8
⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ≠ ∅) |
26 | 25 | adantl 473 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (ℤ≥‘𝑛) ≠ ∅) |
27 | 4 | adantr 472 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝐹:𝑍⟶ℝ) |
28 | 7 | sselda 3744 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ 𝑍) |
29 | 27, 28 | ffvelrnd 6524 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑚) ∈ ℝ) |
30 | 21, 26, 29 | supxrre3rnmpt 40172 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ (𝐹‘𝑚)), ℝ*, < ) ∈
ℝ ↔ ∃𝑥
∈ ℝ ∀𝑚
∈ (ℤ≥‘𝑛)(𝐹‘𝑚) ≤ 𝑥)) |
31 | 20, 30 | mpbird 247 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ (𝐹‘𝑚)), ℝ*, < ) ∈
ℝ) |
32 | 10, 31 | eqeltrd 2839 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < )
∈ ℝ) |
33 | | eqid 2760 |
. . . 4
⊢ (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < ))
= (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑛)), ℝ*, <
)) |
34 | 32, 33 | fmptd 6549 |
. . 3
⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
)):𝑍⟶ℝ) |
35 | | eqid 2760 |
. . . . . . . . . 10
⊢
(ℤ≥‘𝑖) = (ℤ≥‘𝑖) |
36 | 1 | eluzelz2 40143 |
. . . . . . . . . 10
⊢ (𝑖 ∈ 𝑍 → 𝑖 ∈ ℤ) |
37 | 36 | peano2zd 11697 |
. . . . . . . . . 10
⊢ (𝑖 ∈ 𝑍 → (𝑖 + 1) ∈ ℤ) |
38 | 36 | zred 11694 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ 𝑍 → 𝑖 ∈ ℝ) |
39 | | lep1 11074 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ ℝ → 𝑖 ≤ (𝑖 + 1)) |
40 | 38, 39 | syl 17 |
. . . . . . . . . 10
⊢ (𝑖 ∈ 𝑍 → 𝑖 ≤ (𝑖 + 1)) |
41 | 35, 36, 37, 40 | eluzd 40151 |
. . . . . . . . 9
⊢ (𝑖 ∈ 𝑍 → (𝑖 + 1) ∈
(ℤ≥‘𝑖)) |
42 | | uzss 11920 |
. . . . . . . . 9
⊢ ((𝑖 + 1) ∈
(ℤ≥‘𝑖) → (ℤ≥‘(𝑖 + 1)) ⊆
(ℤ≥‘𝑖)) |
43 | 41, 42 | syl 17 |
. . . . . . . 8
⊢ (𝑖 ∈ 𝑍 → (ℤ≥‘(𝑖 + 1)) ⊆
(ℤ≥‘𝑖)) |
44 | | ssres2 5583 |
. . . . . . . 8
⊢
((ℤ≥‘(𝑖 + 1)) ⊆
(ℤ≥‘𝑖) → (𝐹 ↾
(ℤ≥‘(𝑖 + 1))) ⊆ (𝐹 ↾ (ℤ≥‘𝑖))) |
45 | 43, 44 | syl 17 |
. . . . . . 7
⊢ (𝑖 ∈ 𝑍 → (𝐹 ↾
(ℤ≥‘(𝑖 + 1))) ⊆ (𝐹 ↾ (ℤ≥‘𝑖))) |
46 | | rnss 5509 |
. . . . . . 7
⊢ ((𝐹 ↾
(ℤ≥‘(𝑖 + 1))) ⊆ (𝐹 ↾ (ℤ≥‘𝑖)) → ran (𝐹 ↾
(ℤ≥‘(𝑖 + 1))) ⊆ ran (𝐹 ↾ (ℤ≥‘𝑖))) |
47 | 45, 46 | syl 17 |
. . . . . 6
⊢ (𝑖 ∈ 𝑍 → ran (𝐹 ↾
(ℤ≥‘(𝑖 + 1))) ⊆ ran (𝐹 ↾ (ℤ≥‘𝑖))) |
48 | 47 | adantl 473 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ran (𝐹 ↾
(ℤ≥‘(𝑖 + 1))) ⊆ ran (𝐹 ↾ (ℤ≥‘𝑖))) |
49 | | rnresss 39882 |
. . . . . . . 8
⊢ ran
(𝐹 ↾
(ℤ≥‘𝑖)) ⊆ ran 𝐹 |
50 | 49 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ran (𝐹 ↾ (ℤ≥‘𝑖)) ⊆ ran 𝐹) |
51 | 3 | frnd 39943 |
. . . . . . . 8
⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
52 | 51 | adantr 472 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ran 𝐹 ⊆ ℝ) |
53 | 50, 52 | sstrd 3754 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ran (𝐹 ↾ (ℤ≥‘𝑖)) ⊆
ℝ) |
54 | | ressxr 10295 |
. . . . . . 7
⊢ ℝ
⊆ ℝ* |
55 | 54 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ℝ ⊆
ℝ*) |
56 | 53, 55 | sstrd 3754 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ran (𝐹 ↾ (ℤ≥‘𝑖)) ⊆
ℝ*) |
57 | | supxrss 12375 |
. . . . 5
⊢ ((ran
(𝐹 ↾
(ℤ≥‘(𝑖 + 1))) ⊆ ran (𝐹 ↾ (ℤ≥‘𝑖)) ∧ ran (𝐹 ↾ (ℤ≥‘𝑖)) ⊆ ℝ*)
→ sup(ran (𝐹 ↾
(ℤ≥‘(𝑖 + 1))), ℝ*, < ) ≤
sup(ran (𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, <
)) |
58 | 48, 56, 57 | syl2anc 696 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → sup(ran (𝐹 ↾
(ℤ≥‘(𝑖 + 1))), ℝ*, < ) ≤
sup(ran (𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, <
)) |
59 | | eqidd 2761 |
. . . . . . 7
⊢ (𝑖 ∈ 𝑍 → (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < ))
= (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑛)), ℝ*, <
))) |
60 | | fveq2 6353 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝑖 + 1) →
(ℤ≥‘𝑛) = (ℤ≥‘(𝑖 + 1))) |
61 | 60 | reseq2d 5551 |
. . . . . . . . . 10
⊢ (𝑛 = (𝑖 + 1) → (𝐹 ↾ (ℤ≥‘𝑛)) = (𝐹 ↾
(ℤ≥‘(𝑖 + 1)))) |
62 | 61 | rneqd 5508 |
. . . . . . . . 9
⊢ (𝑛 = (𝑖 + 1) → ran (𝐹 ↾ (ℤ≥‘𝑛)) = ran (𝐹 ↾
(ℤ≥‘(𝑖 + 1)))) |
63 | 62 | supeq1d 8519 |
. . . . . . . 8
⊢ (𝑛 = (𝑖 + 1) → sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < )
= sup(ran (𝐹 ↾
(ℤ≥‘(𝑖 + 1))), ℝ*, <
)) |
64 | 63 | adantl 473 |
. . . . . . 7
⊢ ((𝑖 ∈ 𝑍 ∧ 𝑛 = (𝑖 + 1)) → sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < )
= sup(ran (𝐹 ↾
(ℤ≥‘(𝑖 + 1))), ℝ*, <
)) |
65 | 1 | peano2uzs 11955 |
. . . . . . 7
⊢ (𝑖 ∈ 𝑍 → (𝑖 + 1) ∈ 𝑍) |
66 | | xrltso 12187 |
. . . . . . . . 9
⊢ < Or
ℝ* |
67 | 66 | supex 8536 |
. . . . . . . 8
⊢ sup(ran
(𝐹 ↾
(ℤ≥‘(𝑖 + 1))), ℝ*, < ) ∈
V |
68 | 67 | a1i 11 |
. . . . . . 7
⊢ (𝑖 ∈ 𝑍 → sup(ran (𝐹 ↾
(ℤ≥‘(𝑖 + 1))), ℝ*, < ) ∈
V) |
69 | 59, 64, 65, 68 | fvmptd 6451 |
. . . . . 6
⊢ (𝑖 ∈ 𝑍 → ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))‘(𝑖 + 1)) = sup(ran
(𝐹 ↾
(ℤ≥‘(𝑖 + 1))), ℝ*, <
)) |
70 | 69 | adantl 473 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))‘(𝑖 + 1)) = sup(ran
(𝐹 ↾
(ℤ≥‘(𝑖 + 1))), ℝ*, <
)) |
71 | | fveq2 6353 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑖 → (ℤ≥‘𝑛) =
(ℤ≥‘𝑖)) |
72 | 71 | reseq2d 5551 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑖 → (𝐹 ↾ (ℤ≥‘𝑛)) = (𝐹 ↾ (ℤ≥‘𝑖))) |
73 | 72 | rneqd 5508 |
. . . . . . . . 9
⊢ (𝑛 = 𝑖 → ran (𝐹 ↾ (ℤ≥‘𝑛)) = ran (𝐹 ↾ (ℤ≥‘𝑖))) |
74 | 73 | supeq1d 8519 |
. . . . . . . 8
⊢ (𝑛 = 𝑖 → sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < )
= sup(ran (𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, <
)) |
75 | 74 | adantl 473 |
. . . . . . 7
⊢ ((𝑖 ∈ 𝑍 ∧ 𝑛 = 𝑖) → sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < )
= sup(ran (𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, <
)) |
76 | | id 22 |
. . . . . . 7
⊢ (𝑖 ∈ 𝑍 → 𝑖 ∈ 𝑍) |
77 | 66 | supex 8536 |
. . . . . . . 8
⊢ sup(ran
(𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, < ) ∈
V |
78 | 77 | a1i 11 |
. . . . . . 7
⊢ (𝑖 ∈ 𝑍 → sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, < )
∈ V) |
79 | 59, 75, 76, 78 | fvmptd 6451 |
. . . . . 6
⊢ (𝑖 ∈ 𝑍 → ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))‘𝑖) = sup(ran
(𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, <
)) |
80 | 79 | adantl 473 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))‘𝑖) = sup(ran
(𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, <
)) |
81 | 70, 80 | breq12d 4817 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))‘(𝑖 + 1)) ≤
((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑛)), ℝ*, < ))‘𝑖) ↔ sup(ran (𝐹 ↾
(ℤ≥‘(𝑖 + 1))), ℝ*, < ) ≤
sup(ran (𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, <
))) |
82 | 58, 81 | mpbird 247 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))‘(𝑖 + 1)) ≤
((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑛)), ℝ*, < ))‘𝑖)) |
83 | | nfcv 2902 |
. . . . . . . 8
⊢
Ⅎ𝑗𝐹 |
84 | 3 | frexr 40120 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
85 | 83, 2, 1, 84 | limsupre3uz 40489 |
. . . . . . 7
⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔
(∃𝑥 ∈ ℝ
∀𝑖 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑖)𝑥 ≤ (𝐹‘𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)(𝐹‘𝑗) ≤ 𝑥))) |
86 | 12, 85 | mpbid 222 |
. . . . . 6
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑖)𝑥 ≤ (𝐹‘𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)(𝐹‘𝑗) ≤ 𝑥)) |
87 | 86 | simpld 477 |
. . . . 5
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑖)𝑥 ≤ (𝐹‘𝑗)) |
88 | | simp-4r 827 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑖)) ∧ 𝑥 ≤ (𝐹‘𝑗)) → 𝑥 ∈ ℝ) |
89 | 88 | rexrd 10301 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑖)) ∧ 𝑥 ≤ (𝐹‘𝑗)) → 𝑥 ∈ ℝ*) |
90 | 84 | 3ad2ant1 1128 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → 𝐹:𝑍⟶ℝ*) |
91 | 1 | uztrn2 11917 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → 𝑗 ∈ 𝑍) |
92 | 91 | 3adant1 1125 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → 𝑗 ∈ 𝑍) |
93 | 90, 92 | ffvelrnd 6524 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → (𝐹‘𝑗) ∈
ℝ*) |
94 | 93 | ad5ant134 1467 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑖)) ∧ 𝑥 ≤ (𝐹‘𝑗)) → (𝐹‘𝑗) ∈
ℝ*) |
95 | 56 | supxrcld 39807 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, < )
∈ ℝ*) |
96 | 95 | ad5ant13 1216 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑖)) ∧ 𝑥 ≤ (𝐹‘𝑗)) → sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, < )
∈ ℝ*) |
97 | | simpr 479 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑖)) ∧ 𝑥 ≤ (𝐹‘𝑗)) → 𝑥 ≤ (𝐹‘𝑗)) |
98 | 56 | 3adant3 1127 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → ran (𝐹 ↾ (ℤ≥‘𝑖)) ⊆
ℝ*) |
99 | | fvres 6369 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈
(ℤ≥‘𝑖) → ((𝐹 ↾ (ℤ≥‘𝑖))‘𝑗) = (𝐹‘𝑗)) |
100 | 99 | eqcomd 2766 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈
(ℤ≥‘𝑖) → (𝐹‘𝑗) = ((𝐹 ↾ (ℤ≥‘𝑖))‘𝑗)) |
101 | 100 | 3ad2ant3 1130 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → (𝐹‘𝑗) = ((𝐹 ↾ (ℤ≥‘𝑖))‘𝑗)) |
102 | 3 | ffnd 6207 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹 Fn 𝑍) |
103 | 102 | adantr 472 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → 𝐹 Fn 𝑍) |
104 | 1, 76 | uzssd2 40160 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ 𝑍 → (ℤ≥‘𝑖) ⊆ 𝑍) |
105 | 104 | adantl 473 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (ℤ≥‘𝑖) ⊆ 𝑍) |
106 | | fnssres 6165 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 Fn 𝑍 ∧ (ℤ≥‘𝑖) ⊆ 𝑍) → (𝐹 ↾ (ℤ≥‘𝑖)) Fn
(ℤ≥‘𝑖)) |
107 | 103, 105,
106 | syl2anc 696 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐹 ↾ (ℤ≥‘𝑖)) Fn
(ℤ≥‘𝑖)) |
108 | 107 | 3adant3 1127 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → (𝐹 ↾ (ℤ≥‘𝑖)) Fn
(ℤ≥‘𝑖)) |
109 | | simp3 1133 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → 𝑗 ∈ (ℤ≥‘𝑖)) |
110 | | fnfvelrn 6520 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ↾
(ℤ≥‘𝑖)) Fn (ℤ≥‘𝑖) ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → ((𝐹 ↾ (ℤ≥‘𝑖))‘𝑗) ∈ ran (𝐹 ↾ (ℤ≥‘𝑖))) |
111 | 108, 109,
110 | syl2anc 696 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → ((𝐹 ↾ (ℤ≥‘𝑖))‘𝑗) ∈ ran (𝐹 ↾ (ℤ≥‘𝑖))) |
112 | 101, 111 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → (𝐹‘𝑗) ∈ ran (𝐹 ↾ (ℤ≥‘𝑖))) |
113 | | eqid 2760 |
. . . . . . . . . . . 12
⊢ sup(ran
(𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, < ) = sup(ran
(𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, <
) |
114 | 98, 112, 113 | supxrubd 39814 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → (𝐹‘𝑗) ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, <
)) |
115 | 114 | ad5ant134 1467 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑖)) ∧ 𝑥 ≤ (𝐹‘𝑗)) → (𝐹‘𝑗) ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, <
)) |
116 | 89, 94, 96, 97, 115 | xrletrd 12206 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑖)) ∧ 𝑥 ≤ (𝐹‘𝑗)) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, <
)) |
117 | 116 | ex 449 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → (𝑥 ≤ (𝐹‘𝑗) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, <
))) |
118 | 117 | rexlimdva 3169 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) → (∃𝑗 ∈ (ℤ≥‘𝑖)𝑥 ≤ (𝐹‘𝑗) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, <
))) |
119 | 118 | ralimdva 3100 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑖 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑖)𝑥 ≤ (𝐹‘𝑗) → ∀𝑖 ∈ 𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, <
))) |
120 | 119 | reximdva 3155 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑖)𝑥 ≤ (𝐹‘𝑗) → ∃𝑥 ∈ ℝ ∀𝑖 ∈ 𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, <
))) |
121 | 87, 120 | mpd 15 |
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖 ∈ 𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, <
)) |
122 | | simpl 474 |
. . . . . . 7
⊢ ((𝑦 = 𝑥 ∧ 𝑖 ∈ 𝑍) → 𝑦 = 𝑥) |
123 | 79 | adantl 473 |
. . . . . . 7
⊢ ((𝑦 = 𝑥 ∧ 𝑖 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))‘𝑖) = sup(ran
(𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, <
)) |
124 | 122, 123 | breq12d 4817 |
. . . . . 6
⊢ ((𝑦 = 𝑥 ∧ 𝑖 ∈ 𝑍) → (𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))‘𝑖) ↔ 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, <
))) |
125 | 124 | ralbidva 3123 |
. . . . 5
⊢ (𝑦 = 𝑥 → (∀𝑖 ∈ 𝑍 𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))‘𝑖) ↔
∀𝑖 ∈ 𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, <
))) |
126 | 125 | cbvrexv 3311 |
. . . 4
⊢
(∃𝑦 ∈
ℝ ∀𝑖 ∈
𝑍 𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))‘𝑖) ↔
∃𝑥 ∈ ℝ
∀𝑖 ∈ 𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, <
)) |
127 | 121, 126 | sylibr 224 |
. . 3
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))‘𝑖)) |
128 | 1, 2, 34, 82, 127 | climinf 40359 |
. 2
⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < ))
⇝ inf(ran (𝑛 ∈
𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑛)), ℝ*, < )), ℝ,
< )) |
129 | | fveq2 6353 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (ℤ≥‘𝑛) =
(ℤ≥‘𝑘)) |
130 | 129 | reseq2d 5551 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → (𝐹 ↾ (ℤ≥‘𝑛)) = (𝐹 ↾ (ℤ≥‘𝑘))) |
131 | 130 | rneqd 5508 |
. . . . . 6
⊢ (𝑛 = 𝑘 → ran (𝐹 ↾ (ℤ≥‘𝑛)) = ran (𝐹 ↾ (ℤ≥‘𝑘))) |
132 | 131 | supeq1d 8519 |
. . . . 5
⊢ (𝑛 = 𝑘 → sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < )
= sup(ran (𝐹 ↾
(ℤ≥‘𝑘)), ℝ*, <
)) |
133 | 132 | cbvmptv 4902 |
. . . 4
⊢ (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < ))
= (𝑘 ∈ 𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑘)), ℝ*, <
)) |
134 | 133 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < ))
= (𝑘 ∈ 𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑘)), ℝ*, <
))) |
135 | 2, 1, 3, 12 | limsupvaluz2 40491 |
. . . 4
⊢ (𝜑 → (lim sup‘𝐹) = inf(ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
)), ℝ, < )) |
136 | 135 | eqcomd 2766 |
. . 3
⊢ (𝜑 → inf(ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
)), ℝ, < ) = (lim sup‘𝐹)) |
137 | 134, 136 | breq12d 4817 |
. 2
⊢ (𝜑 → ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < ))
⇝ inf(ran (𝑛 ∈
𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑛)), ℝ*, < )), ℝ,
< ) ↔ (𝑘 ∈
𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑘)), ℝ*, < )) ⇝ (lim
sup‘𝐹))) |
138 | 128, 137 | mpbid 222 |
1
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑘)), ℝ*, < ))
⇝ (lim sup‘𝐹)) |