![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supcl | Structured version Visualization version GIF version |
Description: A supremum belongs to its base class (closure law). See also supub 8525 and suplub 8526. (Contributed by NM, 12-Oct-2004.) |
Ref | Expression |
---|---|
supmo.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
supcl.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
Ref | Expression |
---|---|
supcl | ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supmo.1 | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
2 | 1 | supval2 8521 | . 2 ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)))) |
3 | supcl.2 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) | |
4 | 1, 3 | supeu 8520 | . . 3 ⊢ (𝜑 → ∃!𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
5 | riotacl 6771 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ∈ 𝐴) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ∈ 𝐴) |
7 | 2, 6 | eqeltrd 2850 | 1 ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 382 ∈ wcel 2145 ∀wral 3061 ∃wrex 3062 ∃!wreu 3063 class class class wbr 4787 Or wor 5170 ℩crio 6756 supcsup 8506 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-po 5171 df-so 5172 df-iota 5993 df-riota 6757 df-sup 8508 |
This theorem is referenced by: suplub2 8527 supiso 8541 infcl 8554 inflb 8555 infglb 8556 infglbb 8557 suprcl 11189 supxrcl 12350 dgrcl 24209 supssd 29827 xrsupssd 29864 esum2d 30495 oddpwdc 30756 supclt 33865 |
Copyright terms: Public domain | W3C validator |