Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sup0riota Structured version   Visualization version   GIF version

Theorem sup0riota 8412
 Description: The supremum of an empty set is the smallest element of the base set. (Contributed by AV, 4-Sep-2020.)
Assertion
Ref Expression
sup0riota (𝑅 Or 𝐴 → sup(∅, 𝐴, 𝑅) = (𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑅,𝑦

Proof of Theorem sup0riota
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑅 Or 𝐴𝑅 Or 𝐴)
21supval2 8402 . 2 (𝑅 Or 𝐴 → sup(∅, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧))))
3 ral0 4109 . . . . . 6 𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦
43biantrur 526 . . . . 5 (∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧) ↔ (∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧)))
5 rex0 3971 . . . . . . 7 ¬ ∃𝑧 ∈ ∅ 𝑦𝑅𝑧
6 imnot 354 . . . . . . 7 (¬ ∃𝑧 ∈ ∅ 𝑦𝑅𝑧 → ((𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧) ↔ ¬ 𝑦𝑅𝑥))
75, 6ax-mp 5 . . . . . 6 ((𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧) ↔ ¬ 𝑦𝑅𝑥)
87ralbii 3009 . . . . 5 (∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧) ↔ ∀𝑦𝐴 ¬ 𝑦𝑅𝑥)
94, 8bitr3i 266 . . . 4 ((∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧)) ↔ ∀𝑦𝐴 ¬ 𝑦𝑅𝑥)
109a1i 11 . . 3 (𝑅 Or 𝐴 → ((∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧)) ↔ ∀𝑦𝐴 ¬ 𝑦𝑅𝑥))
1110riotabidv 6653 . 2 (𝑅 Or 𝐴 → (𝑥𝐴 (∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧))) = (𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥))
122, 11eqtrd 2685 1 (𝑅 Or 𝐴 → sup(∅, 𝐴, 𝑅) = (𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523  ∀wral 2941  ∃wrex 2942  ∅c0 3948   class class class wbr 4685   Or wor 5063  ℩crio 6650  supcsup 8387 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-po 5064  df-so 5065  df-iota 5889  df-riota 6651  df-sup 8389 This theorem is referenced by:  sup0  8413
 Copyright terms: Public domain W3C validator