![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sumsnf | Structured version Visualization version GIF version |
Description: A sum of a singleton is the term. A version of sumsn 14674 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
sumsnf.1 | ⊢ Ⅎ𝑘𝐵 |
sumsnf.2 | ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sumsnf | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2902 | . . . 4 ⊢ Ⅎ𝑚𝐴 | |
2 | nfcsb1v 3690 | . . . 4 ⊢ Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐴 | |
3 | csbeq1a 3683 | . . . 4 ⊢ (𝑘 = 𝑚 → 𝐴 = ⦋𝑚 / 𝑘⦌𝐴) | |
4 | 1, 2, 3 | cbvsumi 14626 | . . 3 ⊢ Σ𝑘 ∈ {𝑀}𝐴 = Σ𝑚 ∈ {𝑀}⦋𝑚 / 𝑘⦌𝐴 |
5 | csbeq1 3677 | . . . 4 ⊢ (𝑚 = ({〈1, 𝑀〉}‘𝑛) → ⦋𝑚 / 𝑘⦌𝐴 = ⦋({〈1, 𝑀〉}‘𝑛) / 𝑘⦌𝐴) | |
6 | 1nn 11223 | . . . . 5 ⊢ 1 ∈ ℕ | |
7 | 6 | a1i 11 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → 1 ∈ ℕ) |
8 | simpl 474 | . . . . . 6 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → 𝑀 ∈ 𝑉) | |
9 | f1osng 6338 | . . . . . 6 ⊢ ((1 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → {〈1, 𝑀〉}:{1}–1-1-onto→{𝑀}) | |
10 | 6, 8, 9 | sylancr 698 | . . . . 5 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → {〈1, 𝑀〉}:{1}–1-1-onto→{𝑀}) |
11 | 1z 11599 | . . . . . 6 ⊢ 1 ∈ ℤ | |
12 | fzsn 12576 | . . . . . 6 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
13 | f1oeq2 6289 | . . . . . 6 ⊢ ((1...1) = {1} → ({〈1, 𝑀〉}:(1...1)–1-1-onto→{𝑀} ↔ {〈1, 𝑀〉}:{1}–1-1-onto→{𝑀})) | |
14 | 11, 12, 13 | mp2b 10 | . . . . 5 ⊢ ({〈1, 𝑀〉}:(1...1)–1-1-onto→{𝑀} ↔ {〈1, 𝑀〉}:{1}–1-1-onto→{𝑀}) |
15 | 10, 14 | sylibr 224 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → {〈1, 𝑀〉}:(1...1)–1-1-onto→{𝑀}) |
16 | elsni 4338 | . . . . . . 7 ⊢ (𝑚 ∈ {𝑀} → 𝑚 = 𝑀) | |
17 | 16 | adantl 473 | . . . . . 6 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 = 𝑀) |
18 | 17 | csbeq1d 3681 | . . . . 5 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → ⦋𝑚 / 𝑘⦌𝐴 = ⦋𝑀 / 𝑘⦌𝐴) |
19 | sumsnf.1 | . . . . . . . . 9 ⊢ Ⅎ𝑘𝐵 | |
20 | 19 | a1i 11 | . . . . . . . 8 ⊢ (𝑀 ∈ 𝑉 → Ⅎ𝑘𝐵) |
21 | sumsnf.2 | . . . . . . . 8 ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) | |
22 | 20, 21 | csbiegf 3698 | . . . . . . 7 ⊢ (𝑀 ∈ 𝑉 → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
23 | 22 | ad2antrr 764 | . . . . . 6 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
24 | simplr 809 | . . . . . 6 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝐵 ∈ ℂ) | |
25 | 23, 24 | eqeltrd 2839 | . . . . 5 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → ⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ) |
26 | 18, 25 | eqeltrd 2839 | . . . 4 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → ⦋𝑚 / 𝑘⦌𝐴 ∈ ℂ) |
27 | 22 | ad2antrr 764 | . . . . 5 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
28 | elfz1eq 12545 | . . . . . . . 8 ⊢ (𝑛 ∈ (1...1) → 𝑛 = 1) | |
29 | 28 | fveq2d 6356 | . . . . . . 7 ⊢ (𝑛 ∈ (1...1) → ({〈1, 𝑀〉}‘𝑛) = ({〈1, 𝑀〉}‘1)) |
30 | fvsng 6611 | . . . . . . . 8 ⊢ ((1 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → ({〈1, 𝑀〉}‘1) = 𝑀) | |
31 | 6, 8, 30 | sylancr 698 | . . . . . . 7 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → ({〈1, 𝑀〉}‘1) = 𝑀) |
32 | 29, 31 | sylan9eqr 2816 | . . . . . 6 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({〈1, 𝑀〉}‘𝑛) = 𝑀) |
33 | 32 | csbeq1d 3681 | . . . . 5 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ⦋({〈1, 𝑀〉}‘𝑛) / 𝑘⦌𝐴 = ⦋𝑀 / 𝑘⦌𝐴) |
34 | 28 | fveq2d 6356 | . . . . . 6 ⊢ (𝑛 ∈ (1...1) → ({〈1, 𝐵〉}‘𝑛) = ({〈1, 𝐵〉}‘1)) |
35 | simpr 479 | . . . . . . 7 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
36 | fvsng 6611 | . . . . . . 7 ⊢ ((1 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ({〈1, 𝐵〉}‘1) = 𝐵) | |
37 | 6, 35, 36 | sylancr 698 | . . . . . 6 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → ({〈1, 𝐵〉}‘1) = 𝐵) |
38 | 34, 37 | sylan9eqr 2816 | . . . . 5 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({〈1, 𝐵〉}‘𝑛) = 𝐵) |
39 | 27, 33, 38 | 3eqtr4rd 2805 | . . . 4 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({〈1, 𝐵〉}‘𝑛) = ⦋({〈1, 𝑀〉}‘𝑛) / 𝑘⦌𝐴) |
40 | 5, 7, 15, 26, 39 | fsum 14650 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑚 ∈ {𝑀}⦋𝑚 / 𝑘⦌𝐴 = (seq1( + , {〈1, 𝐵〉})‘1)) |
41 | 4, 40 | syl5eq 2806 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = (seq1( + , {〈1, 𝐵〉})‘1)) |
42 | 11, 37 | seq1i 13009 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → (seq1( + , {〈1, 𝐵〉})‘1) = 𝐵) |
43 | 41, 42 | eqtrd 2794 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 Ⅎwnfc 2889 ⦋csb 3674 {csn 4321 〈cop 4327 –1-1-onto→wf1o 6048 ‘cfv 6049 (class class class)co 6813 ℂcc 10126 1c1 10129 + caddc 10131 ℕcn 11212 ℤcz 11569 ...cfz 12519 seqcseq 12995 Σcsu 14615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-inf2 8711 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-sup 8513 df-oi 8580 df-card 8955 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-n0 11485 df-z 11570 df-uz 11880 df-rp 12026 df-fz 12520 df-fzo 12660 df-seq 12996 df-exp 13055 df-hash 13312 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 df-clim 14418 df-sum 14616 |
This theorem is referenced by: fsumsplitsn 14673 |
Copyright terms: Public domain | W3C validator |