![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sumpair | Structured version Visualization version GIF version |
Description: Sum of two distinct complex values. The class expression for 𝐴 and 𝐵 normally contain free variable 𝑘 to index it. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
sumpair.1 | ⊢ (𝜑 → Ⅎ𝑘𝐷) |
sumpair.3 | ⊢ (𝜑 → Ⅎ𝑘𝐸) |
sumupair.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sumupair.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
sumupair.3 | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
sumupair.4 | ⊢ (𝜑 → 𝐸 ∈ ℂ) |
sumupair.5 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
sumupair.8 | ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷) |
sumupair.9 | ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸) |
Ref | Expression |
---|---|
sumpair | ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumupair.5 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | disjsn2 4279 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → ({𝐴} ∩ {𝐵}) = ∅) |
4 | df-pr 4213 | . . . 4 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})) |
6 | prfi 8276 | . . . 4 ⊢ {𝐴, 𝐵} ∈ Fin | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ∈ Fin) |
8 | elpri 4230 | . . . 4 ⊢ (𝑘 ∈ {𝐴, 𝐵} → (𝑘 = 𝐴 ∨ 𝑘 = 𝐵)) | |
9 | sumupair.8 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷) | |
10 | sumupair.3 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐷 ∈ ℂ) |
12 | 9, 11 | eqeltrd 2730 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐶 ∈ ℂ) |
13 | sumupair.9 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸) | |
14 | sumupair.4 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ ℂ) | |
15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐸 ∈ ℂ) |
16 | 13, 15 | eqeltrd 2730 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 ∈ ℂ) |
17 | 12, 16 | jaodan 843 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 = 𝐴 ∨ 𝑘 = 𝐵)) → 𝐶 ∈ ℂ) |
18 | 8, 17 | sylan2 490 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐴, 𝐵}) → 𝐶 ∈ ℂ) |
19 | 3, 5, 7, 18 | fsumsplit 14515 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (Σ𝑘 ∈ {𝐴}𝐶 + Σ𝑘 ∈ {𝐵}𝐶)) |
20 | sumpair.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑘𝐷) | |
21 | nfv 1883 | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
22 | sumupair.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
23 | 20, 21, 9, 22, 10 | sumsnd 39499 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴}𝐶 = 𝐷) |
24 | sumpair.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑘𝐸) | |
25 | sumupair.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
26 | 24, 21, 13, 25, 14 | sumsnd 39499 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ {𝐵}𝐶 = 𝐸) |
27 | 23, 26 | oveq12d 6708 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ {𝐴}𝐶 + Σ𝑘 ∈ {𝐵}𝐶) = (𝐷 + 𝐸)) |
28 | 19, 27 | eqtrd 2685 | 1 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Ⅎwnfc 2780 ≠ wne 2823 ∪ cun 3605 ∩ cin 3606 ∅c0 3948 {csn 4210 {cpr 4212 (class class class)co 6690 Fincfn 7997 ℂcc 9972 + caddc 9977 Σcsu 14460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-oi 8456 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-rp 11871 df-fz 12365 df-fzo 12505 df-seq 12842 df-exp 12901 df-hash 13158 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-clim 14263 df-sum 14461 |
This theorem is referenced by: refsum2cnlem1 39510 |
Copyright terms: Public domain | W3C validator |