MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumodd Structured version   Visualization version   GIF version

Theorem sumodd 15054
Description: If every term in a sum is odd, then the sum is even iff the number of terms in the sum is even. (Contributed by AV, 14-Aug-2021.)
Hypotheses
Ref Expression
sumeven.a (𝜑𝐴 ∈ Fin)
sumeven.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
sumodd.o ((𝜑𝑘𝐴) → ¬ 2 ∥ 𝐵)
Assertion
Ref Expression
sumodd (𝜑 → (2 ∥ (#‘𝐴) ↔ 2 ∥ Σ𝑘𝐴 𝐵))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem sumodd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6158 . . . . 5 (𝑥 = ∅ → (#‘𝑥) = (#‘∅))
2 hash0 13114 . . . . 5 (#‘∅) = 0
31, 2syl6eq 2671 . . . 4 (𝑥 = ∅ → (#‘𝑥) = 0)
43breq2d 4635 . . 3 (𝑥 = ∅ → (2 ∥ (#‘𝑥) ↔ 2 ∥ 0))
5 sumeq1 14369 . . . . 5 (𝑥 = ∅ → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
6 sum0 14401 . . . . 5 Σ𝑘 ∈ ∅ 𝐵 = 0
75, 6syl6eq 2671 . . . 4 (𝑥 = ∅ → Σ𝑘𝑥 𝐵 = 0)
87breq2d 4635 . . 3 (𝑥 = ∅ → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ 0))
94, 8bibi12d 335 . 2 (𝑥 = ∅ → ((2 ∥ (#‘𝑥) ↔ 2 ∥ Σ𝑘𝑥 𝐵) ↔ (2 ∥ 0 ↔ 2 ∥ 0)))
10 fveq2 6158 . . . 4 (𝑥 = 𝑦 → (#‘𝑥) = (#‘𝑦))
1110breq2d 4635 . . 3 (𝑥 = 𝑦 → (2 ∥ (#‘𝑥) ↔ 2 ∥ (#‘𝑦)))
12 sumeq1 14369 . . . 4 (𝑥 = 𝑦 → Σ𝑘𝑥 𝐵 = Σ𝑘𝑦 𝐵)
1312breq2d 4635 . . 3 (𝑥 = 𝑦 → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘𝑦 𝐵))
1411, 13bibi12d 335 . 2 (𝑥 = 𝑦 → ((2 ∥ (#‘𝑥) ↔ 2 ∥ Σ𝑘𝑥 𝐵) ↔ (2 ∥ (#‘𝑦) ↔ 2 ∥ Σ𝑘𝑦 𝐵)))
15 fveq2 6158 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (#‘𝑥) = (#‘(𝑦 ∪ {𝑧})))
1615breq2d 4635 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (2 ∥ (#‘𝑥) ↔ 2 ∥ (#‘(𝑦 ∪ {𝑧}))))
17 sumeq1 14369 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
1817breq2d 4635 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
1916, 18bibi12d 335 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → ((2 ∥ (#‘𝑥) ↔ 2 ∥ Σ𝑘𝑥 𝐵) ↔ (2 ∥ (#‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)))
20 fveq2 6158 . . . 4 (𝑥 = 𝐴 → (#‘𝑥) = (#‘𝐴))
2120breq2d 4635 . . 3 (𝑥 = 𝐴 → (2 ∥ (#‘𝑥) ↔ 2 ∥ (#‘𝐴)))
22 sumeq1 14369 . . . 4 (𝑥 = 𝐴 → Σ𝑘𝑥 𝐵 = Σ𝑘𝐴 𝐵)
2322breq2d 4635 . . 3 (𝑥 = 𝐴 → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘𝐴 𝐵))
2421, 23bibi12d 335 . 2 (𝑥 = 𝐴 → ((2 ∥ (#‘𝑥) ↔ 2 ∥ Σ𝑘𝑥 𝐵) ↔ (2 ∥ (#‘𝐴) ↔ 2 ∥ Σ𝑘𝐴 𝐵)))
25 biidd 252 . 2 (𝜑 → (2 ∥ 0 ↔ 2 ∥ 0))
26 eldifi 3716 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝐴𝑦) → 𝑧𝐴)
2726adantl 482 . . . . . . . . . . . . 13 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑧𝐴)
2827adantl 482 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
29 sumeven.b . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
3029adantlr 750 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝐴) → 𝐵 ∈ ℤ)
3130ralrimiva 2962 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘𝐴 𝐵 ∈ ℤ)
32 rspcsbela 3984 . . . . . . . . . . . 12 ((𝑧𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑧 / 𝑘𝐵 ∈ ℤ)
3328, 31, 32syl2anc 692 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℤ)
34 sumodd.o . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → ¬ 2 ∥ 𝐵)
3534ralrimiva 2962 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘𝐴 ¬ 2 ∥ 𝐵)
36 nfcv 2761 . . . . . . . . . . . . . . . . . 18 𝑘2
37 nfcv 2761 . . . . . . . . . . . . . . . . . 18 𝑘
38 nfcsb1v 3535 . . . . . . . . . . . . . . . . . 18 𝑘𝑧 / 𝑘𝐵
3936, 37, 38nfbr 4669 . . . . . . . . . . . . . . . . 17 𝑘2 ∥ 𝑧 / 𝑘𝐵
4039nfn 1781 . . . . . . . . . . . . . . . 16 𝑘 ¬ 2 ∥ 𝑧 / 𝑘𝐵
41 csbeq1a 3528 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
4241breq2d 4635 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑧 → (2 ∥ 𝐵 ↔ 2 ∥ 𝑧 / 𝑘𝐵))
4342notbid 308 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → (¬ 2 ∥ 𝐵 ↔ ¬ 2 ∥ 𝑧 / 𝑘𝐵))
4440, 43rspc 3293 . . . . . . . . . . . . . . 15 (𝑧𝐴 → (∀𝑘𝐴 ¬ 2 ∥ 𝐵 → ¬ 2 ∥ 𝑧 / 𝑘𝐵))
4526, 44syl 17 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝐴𝑦) → (∀𝑘𝐴 ¬ 2 ∥ 𝐵 → ¬ 2 ∥ 𝑧 / 𝑘𝐵))
4635, 45syl5com 31 . . . . . . . . . . . . 13 (𝜑 → (𝑧 ∈ (𝐴𝑦) → ¬ 2 ∥ 𝑧 / 𝑘𝐵))
4746a1d 25 . . . . . . . . . . . 12 (𝜑 → (𝑦𝐴 → (𝑧 ∈ (𝐴𝑦) → ¬ 2 ∥ 𝑧 / 𝑘𝐵)))
4847imp32 449 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 2 ∥ 𝑧 / 𝑘𝐵)
4933, 48jca 554 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑧 / 𝑘𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝑧 / 𝑘𝐵))
5049adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → (𝑧 / 𝑘𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝑧 / 𝑘𝐵))
51 sumeven.a . . . . . . . . . . . . 13 (𝜑𝐴 ∈ Fin)
52 ssfi 8140 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Fin ∧ 𝑦𝐴) → 𝑦 ∈ Fin)
5352expcom 451 . . . . . . . . . . . . . 14 (𝑦𝐴 → (𝐴 ∈ Fin → 𝑦 ∈ Fin))
5453adantr 481 . . . . . . . . . . . . 13 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝐴 ∈ Fin → 𝑦 ∈ Fin))
5551, 54syl5com 31 . . . . . . . . . . . 12 (𝜑 → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑦 ∈ Fin))
5655imp 445 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
57 simpll 789 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
58 ssel 3582 . . . . . . . . . . . . . . 15 (𝑦𝐴 → (𝑘𝑦𝑘𝐴))
5958adantr 481 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝑘𝑦𝑘𝐴))
6059adantl 482 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑘𝑦𝑘𝐴))
6160imp 445 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
6257, 61, 29syl2anc 692 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℤ)
6356, 62fsumzcl 14415 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → Σ𝑘𝑦 𝐵 ∈ ℤ)
6463anim1i 591 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → (Σ𝑘𝑦 𝐵 ∈ ℤ ∧ 2 ∥ Σ𝑘𝑦 𝐵))
65 opeo 15032 . . . . . . . . 9 (((𝑧 / 𝑘𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝑧 / 𝑘𝐵) ∧ (Σ𝑘𝑦 𝐵 ∈ ℤ ∧ 2 ∥ Σ𝑘𝑦 𝐵)) → ¬ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵))
6650, 64, 65syl2anc 692 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → ¬ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵))
6763zcnd 11443 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → Σ𝑘𝑦 𝐵 ∈ ℂ)
6833zcnd 11443 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℂ)
69 addcom 10182 . . . . . . . . . . . 12 ((Σ𝑘𝑦 𝐵 ∈ ℂ ∧ 𝑧 / 𝑘𝐵 ∈ ℂ) → (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) = (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵))
7069breq2d 4635 . . . . . . . . . . 11 ((Σ𝑘𝑦 𝐵 ∈ ℂ ∧ 𝑧 / 𝑘𝐵 ∈ ℂ) → (2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵)))
7170notbid 308 . . . . . . . . . 10 ((Σ𝑘𝑦 𝐵 ∈ ℂ ∧ 𝑧 / 𝑘𝐵 ∈ ℂ) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵)))
7267, 68, 71syl2anc 692 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵)))
7372adantr 481 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵)))
7466, 73mpbird 247 . . . . . . 7 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
7574ex 450 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ Σ𝑘𝑦 𝐵 → ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
7663anim1i 591 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ¬ 2 ∥ Σ𝑘𝑦 𝐵) → (Σ𝑘𝑦 𝐵 ∈ ℤ ∧ ¬ 2 ∥ Σ𝑘𝑦 𝐵))
7749adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ¬ 2 ∥ Σ𝑘𝑦 𝐵) → (𝑧 / 𝑘𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝑧 / 𝑘𝐵))
78 opoe 15030 . . . . . . . . 9 (((Σ𝑘𝑦 𝐵 ∈ ℤ ∧ ¬ 2 ∥ Σ𝑘𝑦 𝐵) ∧ (𝑧 / 𝑘𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝑧 / 𝑘𝐵)) → 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
7976, 77, 78syl2anc 692 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ¬ 2 ∥ Σ𝑘𝑦 𝐵) → 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
8079ex 450 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (¬ 2 ∥ Σ𝑘𝑦 𝐵 → 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
8180con1d 139 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) → 2 ∥ Σ𝑘𝑦 𝐵))
8275, 81impbid 202 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ Σ𝑘𝑦 𝐵 ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
83 bitr3 342 . . . . 5 ((2 ∥ Σ𝑘𝑦 𝐵 ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)) → ((2 ∥ Σ𝑘𝑦 𝐵 ↔ ¬ 2 ∥ ((#‘𝑦) + 1)) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ ((#‘𝑦) + 1))))
8482, 83syl 17 . . . 4 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((2 ∥ Σ𝑘𝑦 𝐵 ↔ ¬ 2 ∥ ((#‘𝑦) + 1)) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ ((#‘𝑦) + 1))))
85 bicom 212 . . . 4 ((¬ 2 ∥ ((#‘𝑦) + 1) ↔ 2 ∥ Σ𝑘𝑦 𝐵) ↔ (2 ∥ Σ𝑘𝑦 𝐵 ↔ ¬ 2 ∥ ((#‘𝑦) + 1)))
86 bicom 212 . . . 4 ((¬ 2 ∥ ((#‘𝑦) + 1) ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)) ↔ (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ ((#‘𝑦) + 1)))
8784, 85, 863imtr4g 285 . . 3 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((¬ 2 ∥ ((#‘𝑦) + 1) ↔ 2 ∥ Σ𝑘𝑦 𝐵) → (¬ 2 ∥ ((#‘𝑦) + 1) ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))))
88 notnotb 304 . . . . 5 (2 ∥ (#‘𝑦) ↔ ¬ ¬ 2 ∥ (#‘𝑦))
89 hashcl 13103 . . . . . . . . 9 (𝑦 ∈ Fin → (#‘𝑦) ∈ ℕ0)
9056, 89syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (#‘𝑦) ∈ ℕ0)
9190nn0zd 11440 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (#‘𝑦) ∈ ℤ)
92 oddp1even 15011 . . . . . . 7 ((#‘𝑦) ∈ ℤ → (¬ 2 ∥ (#‘𝑦) ↔ 2 ∥ ((#‘𝑦) + 1)))
9391, 92syl 17 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (¬ 2 ∥ (#‘𝑦) ↔ 2 ∥ ((#‘𝑦) + 1)))
9493notbid 308 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (¬ ¬ 2 ∥ (#‘𝑦) ↔ ¬ 2 ∥ ((#‘𝑦) + 1)))
9588, 94syl5bb 272 . . . 4 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ (#‘𝑦) ↔ ¬ 2 ∥ ((#‘𝑦) + 1)))
9695bibi1d 333 . . 3 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((2 ∥ (#‘𝑦) ↔ 2 ∥ Σ𝑘𝑦 𝐵) ↔ (¬ 2 ∥ ((#‘𝑦) + 1) ↔ 2 ∥ Σ𝑘𝑦 𝐵)))
97 simprr 795 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
98 eldifn 3717 . . . . . . . . . 10 (𝑧 ∈ (𝐴𝑦) → ¬ 𝑧𝑦)
9998adantl 482 . . . . . . . . 9 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → ¬ 𝑧𝑦)
10099adantl 482 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
10156, 100jca 554 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦))
102 hashunsng 13137 . . . . . . 7 (𝑧 ∈ (𝐴𝑦) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (#‘(𝑦 ∪ {𝑧})) = ((#‘𝑦) + 1)))
10397, 101, 102sylc 65 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (#‘(𝑦 ∪ {𝑧})) = ((#‘𝑦) + 1))
104103breq2d 4635 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ (#‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ ((#‘𝑦) + 1)))
105 df-nel 2894 . . . . . . . 8 (𝑧𝑦 ↔ ¬ 𝑧𝑦)
106100, 105sylibr 224 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝑦)
107 simpll 789 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝜑)
108 elun 3737 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑘𝑦𝑘 ∈ {𝑧}))
10959com12 32 . . . . . . . . . . . . . 14 (𝑘𝑦 → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
110 elsni 4172 . . . . . . . . . . . . . . 15 (𝑘 ∈ {𝑧} → 𝑘 = 𝑧)
111 eleq1 2686 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → (𝑘𝐴𝑧𝐴))
11227, 111syl5ibr 236 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
113110, 112syl 17 . . . . . . . . . . . . . 14 (𝑘 ∈ {𝑧} → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
114109, 113jaoi 394 . . . . . . . . . . . . 13 ((𝑘𝑦𝑘 ∈ {𝑧}) → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
115108, 114sylbi 207 . . . . . . . . . . . 12 (𝑘 ∈ (𝑦 ∪ {𝑧}) → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
116115com12 32 . . . . . . . . . . 11 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝑘 ∈ (𝑦 ∪ {𝑧}) → 𝑘𝐴))
117116adantl 482 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑘 ∈ (𝑦 ∪ {𝑧}) → 𝑘𝐴))
118117imp 445 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘𝐴)
119107, 118, 29syl2anc 692 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐵 ∈ ℤ)
120119ralrimiva 2962 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ)
121 fsumsplitsnun 14433 . . . . . . 7 ((𝑦 ∈ Fin ∧ 𝑧𝑦 ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
12256, 106, 120, 121syl3anc 1323 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
123122breq2d 4635 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ↔ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
124104, 123bibi12d 335 . . . 4 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((2 ∥ (#‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ↔ (2 ∥ ((#‘𝑦) + 1) ↔ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))))
125 notbi 309 . . . 4 ((2 ∥ ((#‘𝑦) + 1) ↔ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)) ↔ (¬ 2 ∥ ((#‘𝑦) + 1) ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
126124, 125syl6bb 276 . . 3 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((2 ∥ (#‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ↔ (¬ 2 ∥ ((#‘𝑦) + 1) ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))))
12787, 96, 1263imtr4d 283 . 2 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((2 ∥ (#‘𝑦) ↔ 2 ∥ Σ𝑘𝑦 𝐵) → (2 ∥ (#‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)))
1289, 14, 19, 24, 25, 127, 51findcard2d 8162 1 (𝜑 → (2 ∥ (#‘𝐴) ↔ 2 ∥ Σ𝑘𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  wnel 2893  wral 2908  csb 3519  cdif 3557  cun 3558  wss 3560  c0 3897  {csn 4155   class class class wbr 4623  cfv 5857  (class class class)co 6615  Fincfn 7915  cc 9894  0cc0 9896  1c1 9897   + caddc 9899  2c2 11030  0cn0 11252  cz 11337  #chash 13073  Σcsu 14366  cdvds 14926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-oi 8375  df-card 8725  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-z 11338  df-uz 11648  df-rp 11793  df-fz 12285  df-fzo 12423  df-seq 12758  df-exp 12817  df-hash 13074  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-clim 14169  df-sum 14367  df-dvds 14927
This theorem is referenced by:  evensumodd  15055  oddsumodd  15056
  Copyright terms: Public domain W3C validator