![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sumex | Structured version Visualization version GIF version |
Description: A sum is a set. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
Ref | Expression |
---|---|
sumex | ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sum 14614 | . 2 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) | |
2 | iotaex 6027 | . 2 ⊢ (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) ∈ V | |
3 | 1, 2 | eqeltri 2833 | 1 ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 382 ∧ wa 383 = wceq 1630 ∃wex 1851 ∈ wcel 2137 ∃wrex 3049 Vcvv 3338 ⦋csb 3672 ⊆ wss 3713 ifcif 4228 class class class wbr 4802 ↦ cmpt 4879 ℩cio 6008 –1-1-onto→wf1o 6046 ‘cfv 6047 (class class class)co 6811 0cc0 10126 1c1 10127 + caddc 10129 ℕcn 11210 ℤcz 11567 ℤ≥cuz 11877 ...cfz 12517 seqcseq 12993 ⇝ cli 14412 Σcsu 14613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-nul 4939 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ral 3053 df-rex 3054 df-v 3340 df-sbc 3575 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-nul 4057 df-sn 4320 df-pr 4322 df-uni 4587 df-iota 6010 df-sum 14614 |
This theorem is referenced by: fsumrlim 14740 fsumo1 14741 efval 15007 efcvgfsum 15013 eftlub 15036 bitsinv2 15365 bitsinv 15370 lebnumlem3 22961 isi1f 23638 itg1val 23647 itg1climres 23678 itgex 23734 itgfsum 23790 dvmptfsum 23935 plyeq0lem 24163 plyaddlem1 24166 plymullem1 24167 coeeulem 24177 coeid2 24192 plyco 24194 coemullem 24203 coemul 24205 aareccl 24278 aaliou3lem5 24299 aaliou3lem6 24300 aaliou3lem7 24301 taylpval 24318 psercn 24377 pserdvlem2 24379 pserdv 24380 abelthlem6 24387 abelthlem8 24390 abelthlem9 24391 logtayl 24603 leibpi 24866 basellem3 25006 chtval 25033 chpval 25045 sgmval 25065 muinv 25116 dchrvmasumlem1 25381 dchrisum0fval 25391 dchrisum0fno1 25397 dchrisum0lem3 25405 dchrisum0 25406 mulogsum 25418 logsqvma2 25429 selberglem1 25431 pntsval 25458 ecgrtg 26060 esumpcvgval 30447 esumcvg 30455 eulerpartlemsv1 30725 signsplypnf 30934 signsvvfval 30962 vtsval 31022 circlemeth 31025 fwddifnval 32574 knoppndvlem6 32812 binomcxplemnotnn0 39055 stoweidlem11 40729 stoweidlem26 40744 fourierdlem112 40936 fsumlesge0 41095 sge0sn 41097 sge0f1o 41100 sge0supre 41107 sge0resplit 41124 sge0reuz 41165 sge0reuzb 41166 aacllem 43058 |
Copyright terms: Public domain | W3C validator |