Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumeven Structured version   Visualization version   GIF version

Theorem sumeven 15157
 Description: If every term in a sum is even, then so is the sum. (Contributed by AV, 14-Aug-2021.)
Hypotheses
Ref Expression
sumeven.a (𝜑𝐴 ∈ Fin)
sumeven.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
sumeven.e ((𝜑𝑘𝐴) → 2 ∥ 𝐵)
Assertion
Ref Expression
sumeven (𝜑 → 2 ∥ Σ𝑘𝐴 𝐵)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem sumeven
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumeq1 14463 . . 3 (𝑥 = ∅ → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
21breq2d 4697 . 2 (𝑥 = ∅ → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘 ∈ ∅ 𝐵))
3 sumeq1 14463 . . 3 (𝑥 = 𝑦 → Σ𝑘𝑥 𝐵 = Σ𝑘𝑦 𝐵)
43breq2d 4697 . 2 (𝑥 = 𝑦 → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘𝑦 𝐵))
5 sumeq1 14463 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
65breq2d 4697 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
7 sumeq1 14463 . . 3 (𝑥 = 𝐴 → Σ𝑘𝑥 𝐵 = Σ𝑘𝐴 𝐵)
87breq2d 4697 . 2 (𝑥 = 𝐴 → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘𝐴 𝐵))
9 z0even 15150 . . . 4 2 ∥ 0
10 sum0 14496 . . . 4 Σ𝑘 ∈ ∅ 𝐵 = 0
119, 10breqtrri 4712 . . 3 2 ∥ Σ𝑘 ∈ ∅ 𝐵
1211a1i 11 . 2 (𝜑 → 2 ∥ Σ𝑘 ∈ ∅ 𝐵)
13 2z 11447 . . . . . . . 8 2 ∈ ℤ
1413a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 2 ∈ ℤ)
15 sumeven.a . . . . . . . . 9 (𝜑𝐴 ∈ Fin)
16 ssfi 8221 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ 𝑦𝐴) → 𝑦 ∈ Fin)
1716expcom 450 . . . . . . . . . 10 (𝑦𝐴 → (𝐴 ∈ Fin → 𝑦 ∈ Fin))
1817adantr 480 . . . . . . . . 9 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝐴 ∈ Fin → 𝑦 ∈ Fin))
1915, 18mpan9 485 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
20 simpll 805 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
21 ssel 3630 . . . . . . . . . . . 12 (𝑦𝐴 → (𝑘𝑦𝑘𝐴))
2221adantr 480 . . . . . . . . . . 11 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝑘𝑦𝑘𝐴))
2322adantl 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑘𝑦𝑘𝐴))
2423imp 444 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
25 sumeven.b . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
2620, 24, 25syl2anc 694 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℤ)
2719, 26fsumzcl 14510 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → Σ𝑘𝑦 𝐵 ∈ ℤ)
28 eldifi 3765 . . . . . . . . . 10 (𝑧 ∈ (𝐴𝑦) → 𝑧𝐴)
2928adantl 481 . . . . . . . . 9 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑧𝐴)
3029adantl 481 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
3125adantlr 751 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝐴) → 𝐵 ∈ ℤ)
3231ralrimiva 2995 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘𝐴 𝐵 ∈ ℤ)
33 rspcsbela 4039 . . . . . . . 8 ((𝑧𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑧 / 𝑘𝐵 ∈ ℤ)
3430, 32, 33syl2anc 694 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℤ)
3514, 27, 343jca 1261 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∈ ℤ ∧ Σ𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑧 / 𝑘𝐵 ∈ ℤ))
3635adantr 480 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → (2 ∈ ℤ ∧ Σ𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑧 / 𝑘𝐵 ∈ ℤ))
37 sumeven.e . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 2 ∥ 𝐵)
3837ralrimiva 2995 . . . . . . . . . 10 (𝜑 → ∀𝑘𝐴 2 ∥ 𝐵)
39 nfcv 2793 . . . . . . . . . . . 12 𝑘2
40 nfcv 2793 . . . . . . . . . . . 12 𝑘
41 nfcsb1v 3582 . . . . . . . . . . . 12 𝑘𝑧 / 𝑘𝐵
4239, 40, 41nfbr 4732 . . . . . . . . . . 11 𝑘2 ∥ 𝑧 / 𝑘𝐵
43 csbeq1a 3575 . . . . . . . . . . . 12 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
4443breq2d 4697 . . . . . . . . . . 11 (𝑘 = 𝑧 → (2 ∥ 𝐵 ↔ 2 ∥ 𝑧 / 𝑘𝐵))
4542, 44rspc 3334 . . . . . . . . . 10 (𝑧𝐴 → (∀𝑘𝐴 2 ∥ 𝐵 → 2 ∥ 𝑧 / 𝑘𝐵))
4628, 38, 45syl2imc 41 . . . . . . . . 9 (𝜑 → (𝑧 ∈ (𝐴𝑦) → 2 ∥ 𝑧 / 𝑘𝐵))
4746a1d 25 . . . . . . . 8 (𝜑 → (𝑦𝐴 → (𝑧 ∈ (𝐴𝑦) → 2 ∥ 𝑧 / 𝑘𝐵)))
4847imp32 448 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 2 ∥ 𝑧 / 𝑘𝐵)
4948anim1i 591 . . . . . 6 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → (2 ∥ 𝑧 / 𝑘𝐵 ∧ 2 ∥ Σ𝑘𝑦 𝐵))
5049ancomd 466 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → (2 ∥ Σ𝑘𝑦 𝐵 ∧ 2 ∥ 𝑧 / 𝑘𝐵))
51 dvds2add 15062 . . . . 5 ((2 ∈ ℤ ∧ Σ𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑧 / 𝑘𝐵 ∈ ℤ) → ((2 ∥ Σ𝑘𝑦 𝐵 ∧ 2 ∥ 𝑧 / 𝑘𝐵) → 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
5236, 50, 51sylc 65 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
53 vex 3234 . . . . . . 7 𝑧 ∈ V
5453a1i 11 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ V)
55 eldif 3617 . . . . . . . . 9 (𝑧 ∈ (𝐴𝑦) ↔ (𝑧𝐴 ∧ ¬ 𝑧𝑦))
56 df-nel 2927 . . . . . . . . . 10 (𝑧𝑦 ↔ ¬ 𝑧𝑦)
5756biimpri 218 . . . . . . . . 9 𝑧𝑦𝑧𝑦)
5855, 57simplbiim 659 . . . . . . . 8 (𝑧 ∈ (𝐴𝑦) → 𝑧𝑦)
5958adantl 481 . . . . . . 7 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑧𝑦)
6059adantl 481 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝑦)
61 simpll 805 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝜑)
62 elun 3786 . . . . . . . . . . 11 (𝑘 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑘𝑦𝑘 ∈ {𝑧}))
6322com12 32 . . . . . . . . . . . . 13 (𝑘𝑦 → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
64 elsni 4227 . . . . . . . . . . . . . 14 (𝑘 ∈ {𝑧} → 𝑘 = 𝑧)
65 eleq1w 2713 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → (𝑘𝐴𝑧𝐴))
6629, 65syl5ibr 236 . . . . . . . . . . . . . 14 (𝑘 = 𝑧 → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
6764, 66syl 17 . . . . . . . . . . . . 13 (𝑘 ∈ {𝑧} → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
6863, 67jaoi 393 . . . . . . . . . . . 12 ((𝑘𝑦𝑘 ∈ {𝑧}) → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
6968com12 32 . . . . . . . . . . 11 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → ((𝑘𝑦𝑘 ∈ {𝑧}) → 𝑘𝐴))
7062, 69syl5bi 232 . . . . . . . . . 10 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝑘 ∈ (𝑦 ∪ {𝑧}) → 𝑘𝐴))
7170adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑘 ∈ (𝑦 ∪ {𝑧}) → 𝑘𝐴))
7271imp 444 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘𝐴)
7361, 72, 25syl2anc 694 . . . . . . 7 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐵 ∈ ℤ)
7473ralrimiva 2995 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ)
75 fsumsplitsnun 14528 . . . . . 6 ((𝑦 ∈ Fin ∧ (𝑧 ∈ V ∧ 𝑧𝑦) ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
7619, 54, 60, 74, 75syl121anc 1371 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
7776adantr 480 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
7852, 77breqtrrd 4713 . . 3 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
7978ex 449 . 2 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ Σ𝑘𝑦 𝐵 → 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
802, 4, 6, 8, 12, 79, 15findcard2d 8243 1 (𝜑 → 2 ∥ Σ𝑘𝐴 𝐵)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 382   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ∉ wnel 2926  ∀wral 2941  Vcvv 3231  ⦋csb 3566   ∖ cdif 3604   ∪ cun 3605   ⊆ wss 3607  ∅c0 3948  {csn 4210   class class class wbr 4685  (class class class)co 6690  Fincfn 7997  0cc0 9974   + caddc 9977  2c2 11108  ℤcz 11415  Σcsu 14460   ∥ cdvds 15027 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-dvds 15028 This theorem is referenced by:  vtxdgoddnumeven  26505
 Copyright terms: Public domain W3C validator